首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
In vitro differentiation of spermatogonial stem cells (SSCs) promotes the understanding of the mechanism of spermatogenesis. The purpose of this study was to isolate spermatogonial stem cell-like cells from murine testicular tissue, which then were induced into haploid germ cells by retinoic acid (RA). The spermatogonial stem cell-like cells were purified and enriched by a two-step plating method based on different adherence velocities of SSCs and somatic cells. Cell colonies were present after culture in M1-medium for 3 days. Through alkaline phosphatase, RT-PCR and indirect immunofluorescence cell analysis, cell colonies were shown to be SSCs. Subsequently, cell colonies of SSCs were cultured in M2-medium containing RA for 2 days. Then the cell colonies of SSCs were again cultured in M1-medium for 6–8 days, RT-PCR and indirect immunofluorescence cell analysis were chosen to detect haploid male germ cells. It could be demonstrated that 10−7 mol l−1 of RA effectively induced the SSCs into haploid male germ cells in vitro.  相似文献   

2.
Somatic stem/progenitor cells are known to be present in most adult tissues. However, those in the lung have limited abilities for tissue regeneration after serious damage as a result of chronic disease. Therefore, regenerative medicine using exogenous stem cells has been suggested for the treatment of progressive lung diseases such as chronic obstructive pulmonary disease and pulmonary fibrosis. Embryonic stem (ES) cells and induced pluripotent stem cells, with their potent differentiation abilities, are promising sources for the generation of various tissue cells. In this study, we investigated the effects of various differentiation-inducing growth factors on the differentiation of lung cells from ES cells in vitro. Several factors, including activin, nodal, and noggin, significantly promoted the induction of Nkx2.1-positive lung progenitor cells when cells were cultured as embryoid bodies. Bone morphogenetic protein (BMP) 4 signaling controls the lineage commitment of lung cells along the proximal–distal axis. BMP4 promotes the induction of distal cell lineages of alveolar bud, such as Clara cells and mucus-producing goblet cells. These results suggest that several developmentally essential factors, including nodal/activin and BMP signaling, are important in the control of the differentiation of lung epithelial cells from mouse ES cells in vitro.  相似文献   

3.
Functional roles of spermatogonial stem cells in spermatogenesis are self-renewing proliferation and production of differentiated daughter progeny. The ability to recapitulate these actions in vitro is important for investigating their biology and inducing genetic modification that could potentially lead to an alternative means of generating transgenic animals. The objective of this study was to evaluate the survival and proliferation of frozen-thawed bovine spermatogonial stem cells in vitro and investigate the effects of exogenous glial cell line-derived neurotrophic factor (GDNF). In order to accomplish this objective we developed a bovine embryonic fibroblast feeder cell line, termed BEF, to serve as feeder cells in a coculture system with bovine germ cells. Bovine spermatogonial stem cell survival and proliferation in vitro were evaluated by xenogeneic transplantation into the seminiferous tubules of immunodeficient mice. Bovine germ cells cocultured for 1 wk resulted in significantly more round cell donor colonies in recipient mouse testes compared to donor cells transplanted just after thawing. Bovine germ cells cocultured for 2 wk had fewer colony-forming cells than the freshly thawed cell suspensions or cells cultured for 1 wk. Characterization of the feeder cell line revealed endogenous expression of Gdnf mRNA and protein. Addition of exogenous GDNF to the culture medium decreased the number of stem cells present at 1 wk of coculture, but enhanced stem cell maintenance at 2 wk compared to cultures without added GDNF. These data indicate that frozen-thawed bovine spermatogonial stem cells survive cryopreservation and can be maintained during coculture with a feeder cell line in which the maintenance is influenced by GDNF.  相似文献   

4.
Human embryonic stem cell differentiation towards various cell types belonging to ecto-, endo- and mesodermal cell lineages has been demonstrated, with high efficiency rates using standardized differentiation protocols. However, germ cell differentiation from human embryonic stem cells has been very inefficient so far. Even though the influence of various growth factors has been evaluated, the gene expression of different cell lines in relation to their differentiation potential has not yet been extensively examined. In this study, the potential of three male human embryonic stem cell lines to differentiate towards male gonadal cells was explored by analysing their gene expression profiles. The human embryonic stem cell lines were cultured for 14 days as monolayers on supporting human foreskin fibroblasts or as spheres in suspension, and were differentiated using BMP7, or spontaneous differentiation by omitting exogenous FGF2. TLDA analysis revealed that in the undifferentiated state, these cell lines have diverse mRNA profiles and exhibit significantly different potentials for differentiation towards the cell types present in the male gonads. This potential was associated with important factors directing the fate of the male primordial germ cells in vivo to form gonocytes, such as SOX17 or genes involved in the NODAL/ACTIVIN pathway, for example. Stimulation with BMP7 in suspension culture resulted in up-regulation of cytoplasmic SOX9 protein expression in all three lines. The observation that human embryonic stem cells differentiate towards germ and somatic cells after spontaneous and BMP7-induced stimulation in suspension emphasizes the important role of somatic cells in germ cell differentiation in vitro.  相似文献   

5.
Spermatogonial stem cells (SSCs, also called germline stem cells) are self-renewing unipotent stem cells that produce differentiating germ cells in the testis. SSCs can be isolated from the testis and cultured in vitro for long-term periods in the presence of feeder cells (often mouse embryonic fibroblasts). However, the maintenance of SSC feeder culture systems is tedious because preparation of feeder cells is needed at each subculture. In this study, we developed a Matrigel-based feeder-free culture system for long-term propagation of SSCs. Although several in vitro SSC culture systems without feeder cells have been previously described, our Matrigel-based feeder-free culture system is time- and cost- effective, and preserves self-renewability of SSCs. In addition, the growth rate of SSCs cultured using our newly developed system is equivalent to that in feeder cultures. We confirmed that the feeder-free cultured SSCs expressed germ cell markers both at the mRNA and protein levels. Furthermore, the functionality of feeder-free cultured SSCs was confirmed by their transplantation into germ cell-depleted mice. These results suggest that our newly developed feeder-free culture system provides a simple approach to maintaining SSCs in vitro and studying the basic biology of SSCs, including determination of their fate.  相似文献   

6.
7.
Presence of specific growth factors and feeder layers are thought to be important for in vitro embryonic stem cell (ESCs) differentiation. In this study, the effect of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs was evaluated. One-day-old embryoid body was cultured for 4?d in simple culture systems or on top of the MEFs, both in the presence or absence of BMP4. Data showed significant higher viability percent and proliferation rate in simple culture media compared to co-culture systems. Analysis of gene expression indicated that the germ cell-specific genes (VASA and Stra8) were expressed in a significant higher ratio in BMP4-treated cells in simple culture system. Also, the results of immunocytochemistry in simple culture systems showed that the mean percentage of immunostaining cells of VASA, the primordial germ cell (PGC) marker, was increased significantly in BMP4-treated cells compared with BMP4-free group. Meanwhile, CDH1, the late premiotic germ cell marker, showed no significant difference between these two groups. The results suggest that BMP4 is an efficient inducer in PGC derivation from mouse ESC. However, the employment of MEFs as feeder has no apparent effect on PGC derivation.  相似文献   

8.
9.
Cartilage defects have limited capacity for repair and are often replaced by fibrocartilage with inferior mechanical properties. To overcome the limitations of artificial joint replacement, high-throughput screens (HTS) could be developed to identify molecules that stimulate differentiation and/or proliferation of articular cartilage for drug therapy or tissue engineering. Currently embryonic stem cells (ESCs) can differentiate into articular cartilage by forming aggregates (embryoid body (EB), pellet, micromass), which are difficult to image. We present a novel, single-step method of generating murine ESC-derived chondrocytes in monolayer cultures under chemically defined conditions. Mesoderm induction was achieved in cultures supplemented with BMP4, activin A, or Wnt3a. Prolonged culture with sustained activin A, TGFβ3, or BMP4 supplementation led to robust chondrogenic induction. A short pulse of activin A or BMP4 also induced chondrogenesis efficiently while Wnt3a acted as a later inducer. Long-term supplementation with activin A or with activin A followed by TGFβ3 promoted articular cartilage formation. Thus, we devised a serum-free (SF) culture system to generate ESC-derived chondrocytes without the establishment of 3D cultures or the aid of cell sorting. Cultures were governed by the same signaling pathways as 3D ESC differentiation systems and limb bud mesenchyme or articular cartilage explant cultures.  相似文献   

10.
In recent years, embryonic stem (ES) cell-like cells have been obtained from cultured mouse spermatogonial stem cells (SSCs). These advances have shown that SSCs can transition from being the stem cell-producing cells of spermatogenesis to being multipotent cells that can differentiate into derivatives of all three germ layers. As such, they offer new possibilities for studying the mechanisms that regulate stem cell differentiation. The extension of these findings to human SSCs offers a route to obtaining personalized ES-like or differentiated cells for use in regenerative medicine. Here, we compare the different approaches used to derive ES-like cells from SSCs and discuss their importance to clinical and developmental research.  相似文献   

11.
Yeh JR  Zhang X  Nagano MC 《PloS one》2012,7(6):e40002
Proper regulation of spermatogonial stem cells (SSCs) is crucial for sustaining steady-state spermatogenesis. Previous work has identified several paracrine factors involved in this regulation, in particular, glial cell line-derived neurotrophic factor and fibroblast growth factor 2, which promote long-term SSC self-renewal. Using a SSC culture system, we have recently reported that Wnt5a promotes SSC self-renewal through a β-catenin-independent Wnt mechanism whereas the β-catenin-dependent Wnt pathway is not active in SSCs. In contrast, another study has reported that Wnt3a promotes SSC self-renewal through the β-catenin-dependent pathway, as it can stimulate the proliferation of a spermatogonia cell line. To reconcile these two contradictory reports, we assessed Wnt3a effects on SSCs and progenitor cells, rather than a cell line, in vitro. We observed that Wnt3a induced β-catenin-dependent signalling in a large subset of germ cells and increased SSC numbers. However, further investigation revealed that cell populations with greater β-catenin-signalling activity contained fewer SSCs. The increased maintenance of SSCs by Wnt3a coincided with more active cell cycling and the formation of germ cell aggregates, or communities, under feeder-free conditions. Therefore, the results of this study suggest that Wnt3a selectively stimulates proliferation of progenitors that are committed to differentiation or are in the process of exiting the SSC state, leading to enhanced formation of germ cell communities, which indirectly support SSCs and act as an in vitro niche.  相似文献   

12.
Epithelial-mesenchymal interactions regulate the growth and morphogenesis of ectodermal organs such as teeth. Dental pulp stem cells (DPSCs) are a part of dental mesenchyme, derived from the cranial neural crest, and differentiate into dentin forming odontoblasts. However, the interactions between DPSCs and epithelium have not been clearly elucidated. In this study, we established a mouse dental pulp stem cell line (SP) comprised of enriched side population cells that displayed a multipotent capacity to differentiate into odontogenic, osteogenic, adipogenic, and neurogenic cells. We also analyzed the interactions between SP cells and cells from the rat dental epithelial SF2 line. When cultured with SF2 cells, SP cells differentiated into odontoblasts that expressed dentin sialophosphoprotein. This differentiation was regulated by BMP2 and BMP4, and inhibited by the BMP antagonist Noggin. We also found that mouse iPS cells cultured with mitomycin C-treated SF2-24 cells displayed an epithelial cell-like morphology. Those cells expressed the epithelial cell markers p63 and cytokeratin-14, and the ameloblast markers ameloblastin and enamelin, whereas they did not express the endodermal cell marker Gata6 or mesodermal cell marker brachyury. This is the first report of differentiation of iPS cells into ameloblasts via interactions with dental epithelium. Co-culturing with dental epithelial cells appears to induce stem cell differentiation that favors an odontogenic cell fate, which may be a useful approach for tooth bioengineering strategies.  相似文献   

13.
Spermatogonial stem cells (SSCs) support life-long spermatogenesis by self-renewing and producing spermatogonia committed to differentiation. In vitro, SSCs form three-dimensional spermatogonial aggregates (clusters) when cultured with glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2); serial passaging of clusters results in long-term SSC maintenance and expansion. However, the role of these growth factors in controlling patterns of SSC division and fate decision has not been understood thoroughly. We report here that in a short-term culture, GDNF and FGF2 increase the number of dividing SSCs, but not the total SSC number, compared to a no-growth-factor condition. Since the total germ cell number increases with growth factors, these results suggest that GDNF and FGF2 promote a SSC division pattern that sustains the size of the stem cell pool while generating committed progenitors. Our data also show that SSC numbers increase when the cluster structure is disintegrated and cell–cell interaction in clusters is disrupted. Collectively, these results suggest that in this culture system, GDNF and FGF2 stimulate SSC divisions that promote self-renewal and differentiation in the SSC population, and imply that the destruction of the cluster structure, a potential in vitro niche, may contribute to SSC expansion.  相似文献   

14.
Serum-free differentiation protocols of human embryonic stem cells (hESCs) offer the ability to maximize reproducibility and to develop clinically applicable therapies. We developed a high-throughput, 96-well plate, four-color flow cytometry-based assay to optimize differentiation media cocktails and to screen a variety of conditions. We were able to differentiate hESCs to all three primary germ layers, screen for the effect of a range of activin A, BMP4, and VEGF concentrations on endoderm and mesoderm differentiation, and perform RNA-interference (RNAi)-mediated knockdown of a reporter gene during differentiation. Cells were seeded in suspension culture and embryoid bodies were induced to differentiate to the three primary germ layers for 6 days. Endoderm (CXCR4(+)KDR(-)), mesoderm (KDR(+)SSEA-3(-)), and ectoderm (SSEA-3(+)NCAM(+)) differentiation yields for H9 cells were 80 ± 11, 78 ± 7, and 41 ± 9%, respectively. Germ layer identities were confirmed by quantitative PCR. Activin A, BMP4, and bFGF drove differentiation, with increasing concentrations of activin A inducing higher endoderm yields and increasing BMP4 inducing higher mesoderm yields. VEGF drove lateral mesoderm differentiation. RNAi-mediated knockdown of constitutively expressed red fluorescent protein did not affect endoderm differentiation. This assay facilitates the development of serum-free protocols for hESC differentiation to target lineages and creates a platform for screening small molecules or RNAi during ESC differentiation.  相似文献   

15.
This study aimed to explore the regulatory mechanism of metabolism of xenobiotics by cytochrome P450 during the differentiation process of chicken embryonic stem cells (ESCs) into spermatogonial stem cells (SSCs) and consummate the induction differentiation system of chicken embryonic stem cells (cESCs) into SSCs in vitro. We performed RNA-Seq in highly purified male ESCs, male primordial germ cells (PGCs), and SSCs that are associated with the male germ cell differentiation. Thereinto, the metabolism of xenobiotics by cytochrome P450 was selected and analyzed with Venny among male ESC vs male PGC, male PGC vs SSC, and male ESC vs SSC groups and several candidates differentially expressed genes (DEGs) were excavated. Finally, quantitative real-time PCR (qRT-PCR) detected related DEGs under the condition of retinoic acid (RA) induction in vitro, and the expressions were compared with RNA-Seq. By knocking down CYP1A1, we detected the effect of CYP1A1-mediated metabolism of xenobiotics by cytochrome P450 on male germ cell differentiation by qRT-PCR and immunocytochemistry. Results showed that 17,742 DEGs were found during differentiation of ESCs into SSCs and enriched in 72 differently significant pathways. Thereinto, the metabolism of xenobiotics by cytochrome P450 was involved in the whole differentiation process of ESCs into SSCs and several candidate DEGs: CYP1A1, CYP3A4, CYP2D6, ALDH3B1, and ALDH1A3 were expressed with the same trend with RNA-Seq. Knockdown of CYP1A1 caused male germ cell differentiation under restrictions. Our findings showed that the metabolism of xenobiotics by cytochrome P450 was significantly different during the process of male germ cell differentiation and was persistently activated when we induced cESCs to differentiate into SSCs with RA in vitro, which illustrated that the metabolism of xenobiotics by cytochrome P450 played a crucial role in the differentiation process of ESCs into SSCs.  相似文献   

16.
17.
Follicular fluid (FF) is essential for developing ovarian follicles. Besides the oocytes, FF has abundant undifferentiated somatic cells containing stem cell properties, which are discarded in daily medical procedures. Earlier studies have shown that FF cells could differentiate into primordial germ cells via forming embryoid bodies, which produced oocyte-like cells (OLC). This study aimed at isolating mesenchymal stem cells (MSC) from FF and evaluating the impacts of bone morphogenetic protein 15 (BMP15) on the differentiation of these cells into OLCs. Human FF-derived cells were collected from 78 women in the assisted fertilization program and cultured in human recombinant BMP15 medium for 21 days. Real-time polymerase chain reaction and immunocytochemistry staining characterized MSCs and OLCs. MSCs expressed germline stem cell (GSC) markers, such as OCT4 and Nanog. In the control group, after 15 days, OLCs were formed and expressed zona pellucida markers (ZP2 and ZP3), and reached 20–30 µm in diameter. Ten days after induction with BMP15, round cells developed, and the size of OLCs reached 115 µm. A decrease ranged from 0.04 to 4.5 in the expression of pluripotency and oocyte-specific markers observed in the cells cultured in a BMP15-supplemented medium. FF-derived MSCs have an innate potency to differentiate into OLCs, and BMP15 is effective in promoting the differentiation of these cells, which may give an in vitro model to examine germ cell development.  相似文献   

18.
The low efficiency of differentiation into male germ cell (GC)-like cells and haploid germ cells from human embryonic stem cells (hESCs) reflects the culture method employed in the two-dimensional (2D)-microenvironment. In this study, we applied a three-step media and calcium alginate-based 3D-culture system for enhancing the differentiation of hESCs into male germ stem cell (GSC)-like cells and haploid germ cells. In the first step, embryoid bodies (EBs) were derived from hESCs cultured in EB medium for 3 days and re-cultured for 4 additional days in EB medium with BMP4 and RA to specify GSC-like cells. In the second step, the resultant cells were cultured in GC-proliferation medium for 7 days. The GSC-like cells were then propagated after selection using GFR-α1 and were further cultured in GC-proliferation medium for 3 weeks. In the final step, a 3D-co-culture system using calcium alginate encapsulation and testicular somatic cells was applied to induce differentiation into haploid germ cells, and a culture containing approximately 3% male haploid germ cells was obtained after 2 weeks of culture. These results demonstrated that this culture system could be used to efficiently induce GSC-like cells in an EB population and to promote the differentiation of ESCs into haploid male germ cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号