首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
The effect of lipopolysaccharide (LPS, endotoxin), isolated from Proteus mirabilis S1959 strain, on red blood cell (RBC) membranes in whole cells as well as on isolated membranes was studied. Lipid membrane fluidity, conformational state of membrane proteins and the osmotic fragility of RBCs were examined using electron paramagnetic resonance spectroscopy and spectrophotometric method. Lipid membrane fluidity was determined using three spin-labeled fatty acids: 5-, 12- and 16-doxylstearic acid (5-, 12- and 16-DS). The addition of LPS S1959 to RBC suspension resulted in an increase in membrane fluidity, as indicated by 12-DS. At the concentrations of 0.5 and 1 mg/ml, LPS treatment led to a significant (P<0.05) increase in lipid membrane fluidity in the deeper region of lipid bilayer (determined by 12-DS). The conformational changes in membrane proteins were determined using two covalently bound spin labels, 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl and 4-iodoacetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (ISL). The highest concentration of endotoxin significantly (P<0.05) decreased the relative rotational correlation time of ISL and significantly (P<0.05) increased the osmotic fragility of RBCs. The effect of endotoxin was much more profound in isolated membranes than in intact cells treated with LPS. At the concentrations 0.5 and 1 mg/ml, LPS led to a significant increase in h(w)/h(s) ratio. These results indicated increased membrane protein mobility, mainly in the spectrin-actin complex in membrane cytoskeleton. These data suggest that LPS-induced alterations in membrane lipids and cytoskeleton proteins of RBCs lead to loss of membrane integrity.  相似文献   

2.
The structural properties of gamma-irradiated fish red blood cells were studied using a spin labelling method. The gradient increase of lipid fluidity with the increasing gamma radiation doses was indicated by methyl 5-doxylpalmitate and methyl 12-doxylstearate spin labels spectra. In turns, the spectra of maleimide spin label (4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl) and TEMPONE (4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl) indicated a modification of the internal proteins and the increased internal viscosity of red blood cells. The results encourage the conclusion that the increase in membrane fluidity may result from theernations in lipid-protein interactions rather than lipid peroxidation.  相似文献   

3.
Summary The effect of gamma radiation on red blood cells have been examined using a spin labeling method. For this purpose two spin labels were used to monitor membrane fluidity: methyl 5-doxylpalmitate (Met 5-DP) and methyl 12-doxylstearate (Met 12-DS). The irradiation of red cells with the doses of 200 and 500 Gy caused decrease of microviscosity in certain regions of lipid bilayer (as indicated by Met 5-DP and Met 12-DS spectra) but did not affect lipid order parameter. The behavior of two other spin labels, maleimide(4-malei-mido-2,2,6,6-tetramethylpiperidine-1-oxyl) and TEMPONE (4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl) indicated:1) conformational changes of membrane proteins,2) modification of cell internal peptides and proteins,3) decreased internal viscosity of red blood cells.  相似文献   

4.
The membrane surface potential of mycoplasma cells was measured by changes in the partition between the membrane and the aqueous environment of the impermeable cationic amphipatic spin probe 4-(N,N-dimethyl-N-nonyl)ammonium-2,2,6,6-tetramethylpiperidine-1-oxyl (CAT9). Upon energization of glycolyzing mycoplasma cells, the outer surface of these membranes becomes more negatively charged. The effects of uncouplers further indicate that this change in surface potential appear to be dependent on the existence of a delta pH across the membranes.  相似文献   

5.
Membranes from unsaturated fatty acid auxotrophs of Escherichia coli were studied by spin labeling and freeze-fracturing. From measurements of the partition of the spin label TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) between the aqueous phase and fluid lipids in isolated membranes, temperatures, corresponding to the onset and completion of a lateral phase separation of the membrane phospholipids were determined. By freeze-fracture electron microscopy a change in the distribution of particle in the membrane was observed around the temperature of the onset of the lateral phase separation. When cells were frozen from above that temperature a netlike distribution of particles in the plasma membrane was observed for unfixed preparations. When frozen after fixing with glutaraldehyde the particle distribution was random. In membranes of cells frozen with or without fixing from a temperature below the onset of the phase separation, the particles were aggregated and large areas void of particles were present. This behavior can be understood in terms of the freezing rate with the aid of phase diagrams.  相似文献   

6.
Erythrocyte ghosts, prepared from rats fed zinc-deficient diets, were analyzed for the mobility of membrane proteins by electron spin resonance spectroscopy of the sulfhydryl-binding spin probe, 4-maleimido-2,2,6,6-tetramethylpiperidine-N-oxyl. Compared with erythrocyte membranes from rats fed zinc-adequate diets ad libitum or pair-fed, erythrocyte membranes from zinc-deficient rats had a significantly increased ratio of weakly immobilized to strongly immobilized probe-binding proteins. This suggests that dietary zinc deficiency causes a conformational change in erythrocyte membrane proteins. Dietary zinc deficiency did not significantly affect N-ethylmaleimide (NEM)-induced thermal sensitivity or NEM-induced mechanical fragility in rat erythrocytes; however, the addition of zinc in vitro to red cells significantly inhibits NEM-induced mechanical fragility.  相似文献   

7.
The effects of O33 and O49 P. mirabilis lipopolysaccharides (LPSs) on human erythrocyte membrane properties were examined. Physical parameters of the plasma membrane, such as membrane lipid fluidity, physical state of membrane proteins, and osmotic fragility, were determined. The fluidity of the lipids was estimated using three spin-labeled stearic acids of doxyl derivatives: 5-doxylstearic acid, 12-doxylstearic acid, and 16-doxylstearic acid. All the applied labels locate to different depths of the lipid layer and provide information on the ordering of phospholipid fatty acyl chain mobility. LPSs O49 increased the membrane lipid fluidity in the polar region of the lipid bilayer as indicated by spin-labeled 5-doxylstearic acid. An increase in fluidity was also observed in the deeper region using 12-doxylstearic acid only for O33 LPSs. The highest concentration of O33 LPSs (1 mg/ml) increased the motion of membrane proteins detected by the spin-label residue of iodoacetamide. These results showed different actions of O33 and O49 LPSs on the plasma membrane due to the different chemical structures of O-polysaccharides. P. mirabilis O33 and O49 LPSs did not induce changes in the membrane cytoskeleton, osmotic fragility and lipid peroxidation of erythrocytes. On the other hand a rise in the content of carbonyl compounds was observed for the highest concentrations of O33 LPS. This result indicated protein oxidation in the erythrocyte membrane. Lipid A, the hydrophobic part of LPS, did not change the membrane lipid fluidity and osmotic fragility of erythrocytes. Smooth and rough forms of P. mirabilis LPSs were tested for their abilities for complement-mediated immunohemolysis of erythrocytes. Only one out of seven LPSs used was a potent agent of complement-mediated hemolysis. It was rough, Ra-type of P. mirabilis R110 LPS. The O-polysaccharide-dependent scheme of reaction is presented.  相似文献   

8.
Four different thiol reagents: p-chloromercuribenzoic acid (pCMB), mercuric chloride (HgCl2), N-ethylmaleimide (NEM), and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) were employed as agents modifying the transport of a hydrophilic and hydrophobic non-electrolyte spin labels: 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) into bovine erythrocytes. Gamma-irradiation of erythrocytes amplified the effects of pCMB, HgCl2 and NEM of inhibition of TEMPOL transport and attenuated them in the case of TEMPO transport. These results suggest that the transport of TEMPOL across the erythrocyte membrane is controlled by both superficially and more deeply located membrane -SH groups while only superficial -SH groups control the transport of TEMPO. The lower extent of inhibition of TEMPO transport indicates a higher contribution of diffusion through the lipid phase to the transport of TEMPO across the erythrocyte membrane as compared with TEMPOL.  相似文献   

9.
Interaction of betulonic acid chloride with 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, 3-amino-2,2,5,5-tetramethylpyrrolidine-1-oxyl, and 3-aminomethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl yielded the corresponding triterpene amides. The synthesized derivatives of betulonic acid were shown to exhibit a cytotoxic activity on models of the CEM-13, U-937, and MT-4 tumor cells. The concentration of the most active N-[3-oxo-28-norlup-20(29)-en-17-carbamoyl-(2,2,6,6-tetramethylpiperidine-4-yl)-1-oxyl that inhibited survival of the tumor cells by 50% (CCID50) proved to be 5.7–33.1 μM.  相似文献   

10.
The D-galactose-H(+) symport protein (GalP) of Escherichia coli is a homologue of the human glucose transport protein, GLUT1. After amplified expression of the GalP transporter in E. coli, other membrane proteins were prereacted with N-ethylmaleimide in the presence of excess D-galactose to protect GalP. Inner membranes were then specifically spin labelled on Cys(374) of GalP with 4-maleimide-2,2,6,6-tetramethylpiperidine-1-oxyl. The electron paramagnetic resonance (EPR) spectra are characteristic of a single labelling site in which the mobility of the spin label is very highly constrained. This is confirmed with other nitroxyl spin labels, which are derivatives of iodoacetamide and indanedione. Saturation transfer EPR spectra indicate that the overall rotation of the GalP protein in the membrane is slow at low temperatures (approx. 2 degrees C), but considerably more rapid and highly anisotropic at physiological temperatures. The rate of rotation about the membrane normal at 37 degrees C is consistent with predictions for a 12-transmembrane helix assembly that is less than closely packed.  相似文献   

11.
本文用5-氮氧自由基硬脂酸、12-氮??氧自由基硬脂酸和16-氮氧自由基硬脂酸三种脂肪酸自旋标记物对人红细胞膜(血影)的不同深度膜脂的流动性作了进一步的研究,所得到的电子自旋共振波谱表明它们的序参数都随γ照射剂量的增大而增大。本文还用马来酰亚胺氮氧自由基标记在膜蛋白的SH基团上,所得到的波谱表明其旋转相关时间和强固定化对弱固定化组分的谱线高度的比值也都随γ辐照剂量增大而增大。结果说明γ辐照后,人红细胞膜的流动性降低。这与我们用荧光探针研究所得到的结果相似。  相似文献   

12.
Ovalbumin (OVA) has been used continuously as the model antigen in numerous studies of immune reactions and antigen processing, very often encapsulated into liposomes. The purpose of this work was to study the possible interactions of spin-labelled OVA and lipids in liposomal membranes using electron spin resonance (ESR) spectroscopy. OVA was covalently spin-labelled with 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO-maleimide), characterized and encapsulated into multilamellar, negatively charged liposomes. ESR spectra of this liposomal preparation gave evidence for the interaction of OVA with the lipid bilayers. Such an interaction was also evidenced by the ESR spectra of liposomal preparation containing OVA, where liposomes were spin-labelled with n-doxyl stearic acids. The spin-labelled OVA retains its property to bind specific anti-OVA antibodies, as shown by ESR spectroscopy, but also in ELISA for specific anti-OVA IgG.  相似文献   

13.
The d-galactose-H+ symport protein (GalP) of Escherichia coli is a homologue of the human glucose transport protein, GLUT1. After amplified expression of the GalP transporter in E. coli, other membrane proteins were prereacted with N-ethylmaleimide in the presence of excess d-galactose to protect GalP. Inner membranes were then specifically spin labelled on Cys374 of GalP with 4-maleimide-2,2,6,6-tetramethylpiperidine-1-oxyl. The electron paramagnetic resonance (EPR) spectra are characteristic of a single labelling site in which the mobility of the spin label is very highly constrained. This is confirmed with other nitroxyl spin labels, which are derivatives of iodoacetamide and indanedione. Saturation transfer EPR spectra indicate that the overall rotation of the GalP protein in the membrane is slow at low temperatures (approx. 2°C), but considerably more rapid and highly anisotropic at physiological temperatures. The rate of rotation about the membrane normal at 37°C is consistent with predictions for a 12-transmembrane helix assembly that is less than closely packed.  相似文献   

14.
Temperature dependence for partitioning of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) between aqueous and lipid components of whole leaf tissue was measured. TEMPO is an electron spin resonance nitroxide label that has been used in model systems to detect membrane phase separations. Measurements were made on chilling-sensitive tomato leaves, frost-sensitive potato leaves, and frost-hardy and supercooled wheat leaves. The results suggest a membrane phase separation at 11 C in tomato, 3 C in potato, and −11 C in wheat.  相似文献   

15.
Intact, viable ultransformed 3T3 and transformed SV101-3T3 cells were labeled with fatty acid spin labels and with 2,2,6,6-tetramethylpiperidine-1-oxyl in order to measure the fluidity properties of membrane lipids. Both cell types were grown in regular calf serum and in a lipid-depleted serum supplemented with either oleate or elaidate. The temperature dependence of the spectra obtained revealed inflections that correlate with the temperature below which agglutination with concanavalin A is inhibited, and another inflection that correlates with the temperature below which agglutination with wheat germ agglutinin is inhibited, suggesting that (a) the lipid phase(s) in the vicinity of the receptor(s) for these two lectins differ, and (b) a fluid membrane in the vicinity of the lectin receptor(s) is necessary for agglutination with either concanavalin A or wheat germ agglutinin. Studies with a partially characterized plasma membrane fraction suggest that the plasma membrane fluidity parameters closely resemble those of the intact cell. 3T3 and SV101-3T3 cells show virtually identical fluidity profiles by all of the tests we have applied.  相似文献   

16.
The prooxidative effects of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) were observed in human erythrocytes. Incubation of red blood cells with the membrane-permeable TEMPO leads to a decrease in the concentration of intracellular reduced glutathione, accompanied by the reduction of TEMPO. Extracellular ferricyanide inhibited the loss of glutathione and reduction of TEMPO. TEMPO induced glutathione release from the cells and oxidation of hemoglobin to methemoglobin; ferricyanide prevented these effects. These results indicate that TEMPO may act as an oxidant to erythrocytes, whilst extracellular ferricyanide protects against its effects.  相似文献   

17.
A general method for the production of high-affinity, nitroxide-labeled, protein-specific spin probes is described in this paper. Fab' fragments are generated from protein-specific, murine monoclonal antibodies by pepsin digestion and mild reduction with cysteine. The free sulfhydryl group located in the carboxy-terminal region of these molecules and produced de novo by this manipulation is then alkylated by reaction with 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO-maleimide), thereby generating spin-labeled Fab' fragments of these monoclonal antibodies. Two prototypic monoclonal antibodies were tested, each specific for a different integral membrane glycoprotein of human blood platelets. The results indicate that Fab' spin probes generated by this method retain the ability to bind to these glycoproteins within the membrane of intact platelets. These reagents thus represent probes that can be generally used to monitor integral membrane protein mobility on the surface of the intact cell.  相似文献   

18.
The interaction of (+)-catechin with a lipid bilayer was examined by the spin probe method. The spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), was dissolved in an aqueous dipalmitoylphosphatidylcholine (DPPC) dispersion containing (+)-catechin. The temperature dependence of the TEMPO parameter was measured. The increase of this parameter due to pretransition was eliminated by the addition of (+)-catechin, suggesting that it was adsorbed to the lipid membrane surface in the gel state, which hindered the change of the membrane from a flat to wavy structure. In the temperature region of the main transition, the TEMPO parameter increased rapidly, then gradually with increasing temperature, which could be explained by the eutectic phase diagram. The rotational correlation time of a spin probe 16-doxylstearic acid and the order parameter of 5-doxylstearic acid in the aqueous dispersion system of egg yolk phosphatidylcholine revealed that the motion of the alkyl chain in the liquid crystal state was hindered in the center of the membrane as well as near the surface by the adsorption of (+)-catechin.  相似文献   

19.
A new spin-labeled derivative of ADP, 2-(4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl)thioadenosine-5'-diphosphate, has been synthesized. The compound causes both the reversible and irreversible phases of aggregation of human blood platelets at concentrations similar to those required for similar phases of aggregation by ADP itself. The spin-labeled ADP also rivals ADP as a substrate for pyruvate kinase. The interaction of intact human blood platelets and of isolated platelet membranes with the platelet-aggregating spin-labeled derivatives of ADP has been studied. The dramatic decrease in the ESR signal of the spin label is primarily due to chemical reduction of the nitroxide, rather than immobilization of the label. When platelets and spin-labeled ADP are mixed, a rapid burst of nitroxide reduction occurs, followed by a much slower reduction similar in time course to that seen for other spin labels. The rapid burst of reduction, but not the slow reduction, is inhibited by adenosine, an inhibitor of ADP-induced platelet aggregation, and by sulfhydryl-blocking agents. Experiments conducted with Ellman's reagent and platelet membranes or washed platelets revealed a 10 to 30% increase in the number of reactive membrane sulfhydryl groups when ADP was present. These results indicate that there is an increase in the number of reactive sulfhydryl groups on the platelet surface when platelets or membranes are stimulated by ADP.  相似文献   

20.
Metabolism of different nitroxides with piperidine structure used as spin labels in electron spin resonance (ESR) studies in vitro and in vivo was investigated in human keratinocytes of the cell line HaCaT by GC and GC-MS technique combined with S-band ESR. Besides the well known reduction of the nitroxyl radicals to the ESR silent hydroxylamines as primary products our results indicate the formation of the corresponding secondary amines. These reductions are inhibited by the thiol blocking agent N-ethylmaleimide and by the strong inhibitors of the thioredoxin reductase (TR) 2-chloro-2,4-nitrobenzene and 2,6-dichloroindophenol. The competitive inhibitor TR inhibitor azelaic acid and the cytochrome P-450 inhibitor metyrapone lack any effects. The rates of reduction to the hydroxylamines and secondary amines were dependent on the lipid solubility of the nitroxides. Therefore, it can be assumed that the nitroxides must enter the cells for their bioreduction. The mostly discussed intracellular nitroxide reducing substances ascorbic acid and glutathione were unable to form the secondary amines. In conclusion, our results suggest that the secondary amine represents one of the major metabolites of nitroxides besides the hydroxylamine inside keratinocytes formed via the flavoenzyme thioredoxin reductase most probably. Further metabolic conversions were detected with 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl and the benzoate of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl as substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号