首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Calcium-binding proteins and calmodulin-binding proteins were identified in gametes and zygotes of the marine brown algae Fucus vesiculosus, Fucus distichus, and Pelvetia fastigiata using gel (SDS-PAGE) overlay techniques. A calcium current appears to be important during cell polarization in fucoid zygotes (K.R. Robinson and L.F. Jaffe, 1975, Science 187, 70-72; K.R. Robinson and R. Cone, 1980, Science 207, 77-78), but there are no biochemical data on calcium-binding proteins in these algae. By using a sensitive 45Ca2+ overlay method designed to detect high-affinity calcium-binding proteins, at least 9-11 polypeptides were detected in extracts of fucoid gametes and zygotes. All samples had calcium-binding proteins with apparent molecular weights of about 17 and 30 kDa. A 17-kDa calcium-binding protein was purified by calcium-dependent hydrophobic chromatography and was identified as calmodulin by immunological and enzyme activator criteria. A 125I-calmodulin overlay assay was used to identify potential targets of calmodulin action. Sperm contained one major calmodulin-binding protein of about 45 kDa. Eggs lacked major calmodulin-binding activity. A 72-kDa calmodulin-binding protein was prominent in zygotes from 1-65 hr postfertilization. Both calmodulin-binding proteins showed calcium-dependent binding activity. Overall, the data suggest that the appearance and distribution of certain calcium-binding and calmodulin-binding proteins are under developmental regulation, and may reflect the different roles of calcium during fertilization and early embryogenesis.  相似文献   

2.
Bovine brain contains calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes which are composed of two distinct subunits: Mr 60,000 and 63,000. The 60-kDa but not the 63-kDa subunit-containing isozyme can be phosphorylated by cAMP-dependent protein kinase resulting in decreased affinity of this subunit toward calmodulin (Sharma, R. K., and Wang, J. H. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 2603-2607). In contrast, purified 63-kDa subunit-containing isozyme has been found to be phosphorylated by a preparation of bovine brain calmodulin-binding proteins in the presence of Ca2+ and calmodulin. The phosphorylation resulted in the maximal incorporation of 2 mol of phosphate/mol of the phosphodiesterase subunit with a 50% decrease in the enzyme affinity toward calmodulin. At a constant calmodulin concentration of 6 nM, the phosphorylated isozyme required a higher concentration of Ca2+ for activation than the nonphosphorylated phosphodiesterase. The Ca2+ concentrations at 50% activation by calmodulin of the nonphosphorylated and phosphorylated isozymes were 1.1 and 1.9 microM, respectively. Phosphorylation can be reversed by the calmodulin-dependent phosphatase, calcineurin, but not by phosphoprotein phosphatase 1. The results suggest that the Ca2+ sensitivities of brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes can be modulated by protein phosphorylation and dephosphorylation mechanisms in response to different second messengers.  相似文献   

3.
We have shown previously that the subcellular distribution of a major calmodulin-binding protein is altered under conditions causing increased synthesis of cAMP in Aplysia neurons (Saitoh, T., and J. H. Schwartz, 1983, Proc. Natl. Acad. Sci. USA, 80:6708-6712). We now provide evidence that this Mr 55,000 protein is a subunit of a Ca2+/calmodulin-dependent kinase: (a) both the Mr 55,000 calmodulin-binding protein and kinase activity are loosely attached to the membrane-cytoskeletal complex; (b) both kinase activity and the Mr 55,000 protein are translocated from the membrane-cytoskeleton complex to the cytoplasm under conditions that cause the change in the subcellular distribution of the Mr 55,000 calmodulin-binding protein; and (c) calmodulin-binding activity of the Mr 55,000 protein and the ability to carry out the Ca2+/calmodulin-dependent phosphorylation of synapsin I are purified in parallel. The subcellular localization of the Ca2+/calmodulin-dependent protein kinase appears to be under control of two second messengers: Ca2+ and cAMP. We find that the Mr 55,000 subunit is phosphorylated when the extracted membrane-cytoskeleton complex is incubated with Ca2+, calmodulin, and ATP, with the concomitant release of this phosphorylated peptide from the complex. Previously, we had found that, when translocation occurs in extracts in the presence of cAMP and ATP (but in the absence of Ca2+), there was no detectable phosphorylation of the Mr 55,000 subunit itself. The subcellular distribution of the subunit thus appears to be influenced by (a) cAMP-dependent phosphorylation, which, we infer, modifies some as yet unidentified structural component, causing the release of the enzyme; and (b) Ca2+/calmodulin-dependent phosphorylation of the Mr 55,000 subunit. These studies also suggest that phosphorylation has an important regulatory consequence: during the Ca2+/calmodulin-dependent translocation of the Mr 55,000 subunit, the kinase appears to be activated, becoming independent of added Ca2+/calmodulin.  相似文献   

4.
Calmodulin-stimulated protein kinase activity from rat pancreas   总被引:8,自引:1,他引:7       下载免费PDF全文
Previous work from our laboratory has demonstrated that neurohumoral stimulation of the exocrine pancreas is associated with the phosphorylation of the Mr 29,000 ribosomal protein S6. In a cell-free system using pancreatic postmicrosomal supernatant as the kinase donor, we found that the following co-factors stimulate the phosphorylation of the Mr 29,000 ribosomal protein: calcium with calmodulin, calcium with phosphatidyl serine, and cAMP. These findings suggest that the pancreas contains a calcium-calmodulin-dependent protein kinase (CaM-PK) that can phosphorylate the Mr 29,000 ribosomal protein. A CaM-PK activity was partially purified sequentially by ion exchange, gel filtration, and calmodulin-affinity chromatography. Phosphorylation of the Mr 29,000 ribosomal protein by the partially purified CaM-PK was dependent on the presence of both calcium and calmodulin and not on the other co- factors. The CaM-PK fraction contained a phosphoprotein of Mr 51,000 whose phosphorylation was also dependent on calcium and calmodulin. When 125I-calmodulin-binding proteins from the CaM-PK fraction were identified using electrophoretic transfers of SDS-polyacrylamide gels, a single Mr 51,000 protein was labeled. The preparation enriched in CaM- PK activity contained an Mr 51,000 protein that underwent phosphorylation in a calcium-calmodulin-dependent manner and an Mr 51,000 calmodulin-binding protein. It is therefore possible that the CaM-PK may comprise a calmodulin-binding phosphoprotein component of Mr 51,000.  相似文献   

5.
P-57 is a neural specific calmodulin-binding protein   总被引:4,自引:0,他引:4  
P-57 is a novel calmodulin-binding protein which has recently been isolated from bovine cerebral cortex (Andreasen, T. J., Luetje, C. W., Heideman, W., and Storm, D. R. (1983) Biochemistry 22, 4615-4618). In contrast to all other calmodulin-binding proteins characterized thus far, P-57 has equivalent or higher affinity for calmodulin in the absence of free Ca2+ compared to the presence of Ca2+. In this study, the distribution of P-57 in other tissues and within brain was examined using a radioimmune assay and photoaffinity labeling with azido-125I-calmodulin. P-57 was not found in tissues other than brain, retina, and spinal cord. Within brain, P-57 levels varied from 0.1% of the total protein in white matter regions to about 0.5% in cell body-rich fractions. The protein was found in both membrane and soluble fractions. P-57 is the most abundant calmodulin-binding protein in brain and appears to be neural specific. The concentrations of P-57 in brain and its affinity for calmodulin in the absence of Ca2+ are sufficient to complex a significant fraction of the total calmodulin present.  相似文献   

6.
Functional domain structure of calcineurin A: mapping by limited proteolysis   总被引:15,自引:0,他引:15  
M J Hubbard  C B Klee 《Biochemistry》1989,28(4):1868-1874
Limited proteolysis of calcineurin, the Ca2+/calmodulin-stimulated protein phosphatase, with clostripain is sequential and defines four functional domains in calcineurin A (61 kDa). In the presence of calmodulin, an inhibitory domain located at the carboxyl terminus is rapidly degraded, yielding an Mr 57,000 fragment which retains the ability to bind calmodulin but whose p-nitrophenylphosphatase is fully active in the absence of Ca2+ and no longer stimulated by calmodulin. Subsequent cleavage(s), near the amino terminus, yield(s) an Mr 55,000 fragment which has lost more than 80% of the enzymatic activity. A third, slower, proteolytic cleavage in the carboxyl-terminal half of the protein converts the Mr 55,000 fragment to an Mr 42,000 polypeptide which contains the calcineurin B binding domain and an Mr 14,000 fragment which binds calmodulin in a Ca2+-dependent manner with high affinity. In the absence of calmodulin, clostripain rapidly severs both the calmodulin-binding and the inhibitory domains. The catalytic domain is preserved, and the activity of the proteolyzed 43-kDa enzyme is increased 10-fold in the absence of Ca2+ and 40-fold in its presence. The calcineurin B binding domain and calcineurin B appear unaffected by proteolysis both in the presence and in the absence of calmodulin. Thus, calcineurin A is organized into functionally distinct domains connected by proteolytically sensitive hinge regions. The catalytic, inhibitory, and calmodulin-binding domains are readily removed from the protease-resistant core, which contains the calcineurin B binding domain. Calmodulin stimulation of calcineurin is dependent on intact inhibitory and calmodulin-binding domains, but the degraded enzyme lacking these domains is still regulated by Ca2+.  相似文献   

7.
Calmodulin was isolated and purified to homogeneity from dog pancreas. Highly purified subcellular fractions were prepared from dog pancreas by zonal sucrose-density ultracentrifugation and assayed for their ability to bind 125I-calmodulin in vitro. Proteins contained in these fractions were also examined for binding of 125I-calmodulin after their separation by polyacrylamide-gel electrophoresis in SDS. Calmodulin-binding proteins were detected in all subcellular fractions except the zymogen granule and zymogen-granule membrane fractions. One calmodulin-binding protein (Mr 240,000), observed in a washed smooth-microsomal fraction, has properties similar to those of alpha-fodrin. The postribosomal-supernatant fraction contained three prominent calmodulin-binding proteins, with apparent Mr values of 62,000, 50,000 and 40,000. Calmodulin-binding proteins, prepared from a postmicrosomal-supernatant fraction by Ca2+-dependent affinity chromatography on immobilized calmodulin, exhibited calmodulin-dependent phosphodiesterase, protein phosphatase and protein kinase activities. In the presence of Ca2+ and calmodulin, phosphorylation of smooth-muscle myosin light chain and brain synapsin and autophosphorylation of a Mr-50,000 protein were observed. Analysis of the protein composition of the preparation by SDS/polyacrylamide-gel electrophoresis revealed a major protein of Mr 50,000 which bound 125I-calmodulin. This protein shares characteristics with the calmodulin-dependent multifunctional protein kinase (kinase II) recently observed to have a widespread distribution. The possible role of calmodulin-binding proteins and calmodulin-regulated enzymes in the regulation of exocrine pancreatic protein synthesis and secretion is discussed.  相似文献   

8.
The gel-overlay technique with 125I-labelled calmodulin allowed the detection of several calmodulin-binding proteins of Mr 280 000, 150 000, 97 000, 56 000, 35 000 and 24 000 in canine cardiac sarcoplasmic reticulum. Only two calmodulin-binding proteins could be identified unambiguously. Among them, the 97 000-Mr protein that undergoes phosphorylation in the presence of Ca2+ and calmodulin, is likely to be glycogen phosphorylase. In contrast, the (Ca2+ + Mg2+)-activated ATPase did not appear to bind calmodulin under our experimental conditions. The second known calmodulin target is dephosphophospholamban, which migrates with an apparent Mr of 24 000. The dimeric as well as the monomeric form of phospholamban was found to bind calmodulin. Phospholamban shifts the apparent Kd of erythrocyte (Ca2+ + Mg2+)-activated ATPase for calmodulin, suggesting thus a tight binding of calmodulin to the proteolipid. Interestingly enough, phospholamban phosphorylation by either the catalytic subunit of cyclic AMP-dependent protein kinase or the Ca2+/calmodulin-dependent phospholamban kinase was found to inhibit calmodulin binding.  相似文献   

9.
Using Ca(2+)-dependent affinity chromatography on a synthetic compound (W-77)-coupled Sepharose 4B column, we purified two different Ca(2+)-binding proteins from rabbit lung extracts. The molecular weights of these proteins were estimated to be 17 kDa (calmodulin) and 10 kDa, respectively. The partial amino acid sequence of the 10-kDa protein revealed that it has two EF-hand structures. In addition, the 10-kDa protein was highly homologous (91%) to the product of growth-regulated gene, 2A9 (calcyclin). The Ca(2+)-binding property of the 10-kDa protein was observed by a change in the uv difference spectrum. Equilibrium dialysis showed that 1 mol of the 10-kDa protein bound to 2.04 +/- 0.05 mol of Ca2+ in the presence of 10(-4) M Ca2+. However, the protein failed to activate calmodulin-dependent enzymes such as Ca2+/CaM kinase II, myosin light chain kinase, and phosphodiesterase. We found that a 50-kDa cytosolic protein of the rabbit lung, intestine, and spleen bound to the 10-kDa protein, in a Ca(2+)-dependent manner. The distribution of calcyclin and calcyclin binding proteins was unique and seems to differ from that of calmodulin and calmodulin-binding proteins. Thus, calcyclin probably plays a physiological role through its binding proteins for the Ca(2+)-dependent cellular response.  相似文献   

10.
A calmodulin-dependent protein phosphatase (calcineurin) was converted to an active, calmodulin-independent form by a Ca2+-dependent protease (calpain I). Proteolysis could be blocked by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, leupeptin, or N-ethylmaleimide, but other protease inhibitors such as phenylmethanesulfonyl fluoride, aprotinin, benzamidine, diisopropyl fluorophosphate, and trypsin inhibitor were ineffective. Phosphatase proteolyzed in the absence of calmodulin was insensitive to Ca2+ or Ca2+/calmodulin; the activity of the proteolyzed enzyme was greater than the Ca2+/calmodulin-stimulated activity of the unproteolyzed enzyme. Proteolysis of the phosphatase in the presence of calmodulin proceeded at a more rapid rate than in its absence, and the proteolyzed enzyme retained a small degree of sensitivity to Ca2+/calmodulin, being further stimulated some 15-20%. Proteolytic stimulation of phosphatase activity was accompanied by degradation of the 60-kilodalton (kDa) subunit; the 19-kDa subunit was not degraded. In the absence of calmodulin, the 60-kDa subunit was sequentially degraded to 58- and 45-kDa fragments; the 45-kDa fragment was incapable of binding 125I-calmodulin. In the presence of calmodulin, the 60-kDa subunit was proteolyzed to fragments of 58, 55 (2), and 48 kDa, all of which retained some ability to bind calmodulin. These data, coupled with our previous report that the human platelet calmodulin-binding proteins undergo Ca2+-dependent proteolysis upon platelet activation [Wallace, R. W., Tallant, E. A., & McManus, M. C. (1987) Biochemistry 26, 2766-2773], suggest that the Ca2+-dependent protease may have a role in the platelet as an irreversible activator of certain Ca2+/calmodulin-dependent reactions.  相似文献   

11.
A method has been devised to study the influence of Ca2+ on the in vitro formation of actin gel networks. Under appropriate conditions low-Ca2+ cytosolic extracts (less than 1 nM) from macrophages rapidly formed a macromolecular complex composed of actin, filamin, alpha-actinin and two new proteins of 70 kDa and 55 kDa. [Pacaud, M. (1986) Eur. J. Biochem. 156, 521-530]. Increasing concentrations of free Ca2+ to 1-2 microM resulted in complete inhibition of the association of 70-kDa protein, a protein which associates actin filaments into parallel arrays. Concentrations of Ca2+ greater than 3 microM caused incorporation of two additional proteins, gelsolin and a 18-kDa polypeptide, with no change in either the actin or alpha-actinin content of the cytoskeletal structures. Use of a polyacrylamide gel overlay technique with 125I-calmodulin revealed that a high-Mr calmodulin-binding protein analogous to spectrin was also associated with these structures when micromolar Ca2+ was present. Similar assays with 45CaCl2 indicated that the 70-kDa protein binds Ca2+ with high affinity. It is thus suggested that Ca2+ might regulate the dynamic assembly of microfilaments through several target proteins, gelsolin, the 70-kDa protein and calmodulin.  相似文献   

12.
In an effort to characterize the second messenger system for LH release, we have previously identified five calmodulin-binding proteins in rat gonadotropes of Mr greater than 205,000, 200,000, 135,000, 60,000, and 52,000. In the present study, we have used a calmodulin overlayer assay combined with Western blotting to determine the molecular identity of three calmodulin-binding proteins in rat gonadotropes: the alpha subunit of spectrin (Mr greater than 205,000), caldesmon (Mr 84,000), and the alpha subunit of calcineurin (Mr 60,000). The Mr greater than 205,000 and Mr 60,000 components or rat pituitary which bind calmodulin are immunoreactive with spectrin and calcineurin antisera, respectively. Rat pituitary also contains an Mr 84,000 component, which is immunoreactive with polyclonal sera and monoclonal antibody raised to chicken gizzard caldesmon (Mr 150,000). Like caldesmon from other sources, the Mr 84,000 component remains soluble after heat treatment and preferentially binds either filamentous actin or calmodulin, depending on the Ca2+ concentration. The three calmodulin-binding proteins were localized specifically in gonadotropes using indirect immunofluorescence microscopy or by Western-blotting cell fractions enriched for gonadotropes. After differential centrifugation of pituitary homogenate, spectrin immunoreactivity was found associated with the nuclear and secretory granule fractions, whereas caldesmon immunoreactivity was seen in the cytosolic fraction and calcineurin in the cytosolic and nuclear fractions. Although the precise role for these proteins remains unknown, the apparent requirement for calmodulin and the small number of calmodulin-binding proteins in the gonadotrope suggest their involvement in mediating GnRH actions.  相似文献   

13.
It was previously reported that the phosphorylation of three proteins of 36, 40 to 42, and 50 kDa by casein kinase 2 is inhibited by calmodulin in nuclear extracts from rat liver cells (R. Bosser, R. Aligué, D. Guerini, N. Agell, E. Carafoli, and O. Bachs, J. Biol. Chem. 268:15477-15483, 1993). By immunoblotting, peptide mapping, and endogenous phosphorylation experiments, the 36- and 40- to 42-kDa proteins have been identified as the A2 and C proteins, respectively, of the heterogeneous nuclear ribonucleoprotein particles. To better understand the mechanism by which calmodulin inhibits the phosphorylation of these proteins, they were purified by using single-stranded DNA chromatography, and the effect of calmodulin on their phosphorylation by casein kinase 2 was analyzed. Results revealed that whereas calmodulin inhibited the phosphorylation of purified A2 and C proteins in a Ca(2+)-dependent manner, it did not affect the casein kinase 2 phosphorylation of a different protein substrate, i.e., beta-casein. These results indicate that the effect of calmodulin was not on casein kinase 2 activity but on specific protein substrates. The finding that the A2 and C proteins can bind to a calmodulin-Sepharose column in a Ca(2+)-dependent manner suggests that this association could prevent the phosphorylation of the proteins by casein kinase 2. Immunoelectron microscopy studies have revealed that such interactions could also occur in vivo, since calmodulin and A2 and C proteins colocalize on the ribonucleoprotein particles in rat liver cell nuclei.  相似文献   

14.
A method has been developed for binding calmodulin, radioiodinated by the lactoperoxidase method, to denaturing gels and has been used to attempt to identify the calmodulin-binding proteins of cerebral cortex postsynaptic densities (PSDs). Calmodulin primarily bound to the major 51,000 Mr protein in a saturatable manner; secondarily bound to the 60,000 Mr region, 140,000 Mr region, and 230,000 Mr protein; and bound in lesser amounts to a number of other proteins. The major 51,000 Mr calmodulin-binding protein is one of unknown identity. Binding of iodinated calmodulin to these proteins was blocked by EDTA, EGTA, chlorpromazine, and preincubation with unlabeled calmodulin. Calmodulin iodinated by the chloramine-T method, which inactivates calmodulin did not bind to the PSD but bound nonspecifically to histone. Calmodulin did not bind to proteins from a variety of sources for which calmodulin interactions have not been found. Except for three proteins, all of the proteins of synaptic membranes that bind calmodulin could be accounted for by proteins of the PSD which are a part of the synaptic membrane fraction. The major 51,000 M, protein and the corresponding iodinated calmodulin binding were greatly reduced in cerebellar PSDs and this difference between cerebral cortex and cerebellar PSDs is discussed in light of the possible function of calmodulin in synaptic excitatory responses.  相似文献   

15.
A simple and rapid procedure for the purification of the native form of chicken gizzard myosin light-chain kinase (Mr 136000) is described which eliminates problems of proteolysis previously encountered. During this procedure, a calmodulin-binding protein of Mr 141000, which previously co-purified with the myosin light-chain kinase, is removed and shown to be a distinct protein on the basis of lack of kinase activity, different chymotryptic peptide maps, lack of cross-reactivity with a monoclonal antibody to turkey gizzard myosin light-chain kinase, and lack of phosphorylation by the purified catalytic subunit of cyclic AMP-dependent protein kinase. This Mr-141000 calmodulin-binding protein is identified as caldesmon on the basis of Ca2+-dependent interaction with calmodulin, subunit Mr, Ca2+-independent interaction with skeletal-muscle F-actin, Ca2+-dependent competition between calmodulin and F-actin for caldesmon, and tissue content.  相似文献   

16.
W G Thomas  L Pipolo  H Qian 《FEBS letters》1999,455(3):367-371
To identify regulators of the type 1A angiotensin II receptor (AT1A), we investigated the interaction of cellular proteins with a fusion protein containing the rat AT1A receptor carboxyl-terminus. An approximately 20 kDa cytoplasmic protein interacted with the fusion protein in a Ca2+-dependent manner and was identified as calmodulin. A control peptide with high affinity for Ca2+/calmodulin and a peptide corresponding to a membrane proximal portion of the AT1A receptor carboxyl-terminus with analogy to known calmodulin-binding sequences were synthesised and tested for calmodulin-binding. Using in vitro binding assays combined with gel shift analysis, we demonstrated the formation of complexes between calmodulin and both peptides, which were Ca2+-dependent and of 1:1 stoichiometry. Affinity gels produced from these peptides also purified calmodulin from cell extracts. These results suggest a novel feedback regulation of the AT1A receptor by Ca2+/calmodulin and identify the membrane proximal region of the carboxyl-terminus as a focal point for interactions important for AT1A receptor function.  相似文献   

17.
We have developed a simplified procedure for the production of metabolically labeled calmodulin. We used bacterial clones (Escherichia coli) that were found to express VU-1 calmodulin, a calmodulin that is fully active with a variety of calmodulin-regulated enzymes. VU-1 calmodulin was labeled with sulfur-35 in bacteria maintained in a sulfur-free medium. Calmodulin was then purified by chromatography on phenyl-Sepharose. Under these conditions, the specific activity of the proteins was 150 to 400 cpm/fmol of calmodulin. To demonstrate the utility of this labeled VU-1 calmodulin, we examined the calmodulin-binding proteins in aortic myocyte preparation from Day 0 and Day 15 cultures by using both the gel and the nitrocellulose overlay protocols. The results showed that calmodulin-binding proteins are easily detected by the two procedures and that the profile of these target proteins changed in myocyte with time in culture. While most of these calmodulin-binding proteins have not been identified, the relative mobility on SDS-PAGE gels suggests that myosin light chain kinase (Mr approximately 137,000) was detected by these methods. We demonstrated here that the nitrocellulose overlay was faster than the gel overlay and that this technique can be useful for the study of calmodulin-binding proteins.  相似文献   

18.
We have evaluated the possibility that a major, abundant cellular substrate for protein kinase C might be a calmodulin-binding protein. We have recently labeled this protein, which migrates on sodium dodecyl sulfate-gel electrophoresis with an apparent Mr of 60,000 from chicken and 80,000-87,000 from bovine cells and tissues, the myristoylated alanine-rich C kinase substrate (MARCKS). The MARCKS proteins from both species could be cross-linked to 125I-calmodulin in a Ca2+-dependent manner. Phosphorylation of either protein by protein kinase C prevented 125I-calmodulin binding and cross-linking, suggesting that the calmodulin-binding domain might be located at or near the sites of protein kinase C phosphorylation. Both bovine and chicken MARCKS proteins contain an identical 25-amino acid domain that contains all 4 of the serine residues phosphorylated by protein kinase C in vitro. In addition, this domain is similar in sequence and structure to previously described calmodulin-binding domains. A synthetic peptide corresponding to this domain inhibited calmodulin binding to the MARCKS protein and also could be cross-linked to 125I-calmodulin in a calcium-dependent manner. In addition, protein kinase C-dependent phosphorylation of the synthetic peptide inhibited its binding and cross-linking to 125I-calmodulin. The peptide bound to fluorescently labeled 5-dimethylaminonaphthalene-1-sulfonyl-calmodulin with a dissociation constant of 2.8 nM, and inhibited the calmodulin-dependent activation of cyclic nucleotide phosphodiesterase with an IC50 of 4.8 nM. Thus, the peptide mimics the calmodulin-binding properties of the MARCKS protein and probably represents its calmodulin-binding domain. Phosphorylation of these abundant, high affinity calmodulin-binding proteins by protein kinase C in intact cells could cause displacement of bound calmodulin, perhaps leading to activation of Ca2+-calmodulin-dependent processes.  相似文献   

19.
Calmodulin is an essential protein in the model organism Dictyostelium discoideum. As in other organisms, this small, calcium-regulated protein mediates a diversity of cellular events including chemotaxis, spore germination, and fertilization. Calmodulin works in a calcium-dependent or -independent manner by binding to and regulating the activity of target proteins called calmodulin-binding proteins. Profiling suggests that Dictyostelium has 60 or more calmodulin-binding proteins with specific subcellular localizations. In spite of the central importance of calmodulin, the study of these target proteins is still in its infancy. Here we critically review the history and state of the art of research into all of the identified and presumptive calmodulin-binding proteins of Dictyostelium detailing what is known about each one with suggestions for future research. Two individual calmodulin-binding proteins, the classic enzyme calcineurin A (CNA; protein phosphatase 2B) and the nuclear protein nucleomorphin (NumA), which is a regulator of nuclear number, have been particularly well studied. Research on the role of calmodulin in the function and regulation of the various myosins of Dictyostelium, especially during motility and chemotaxis, suggests that this is an area in which future active study would be particularly valuable. A general, hypothetical model for the role of calmodulin in myosin regulation is proposed.  相似文献   

20.
A Molla  J G Demaille 《Biochemistry》1986,25(11):3415-3424
Phospholamban, the cardiac sarcoplasmic reticulum proteolipid, is phosphorylated by cAMP-dependent protein kinase, by Ca2+/phospholipid-dependent protein kinase, and by an endogenous Ca2+/calmodulin-dependent protein kinase, the identity of which remains to be defined. The aim of this study was therefore to characterize the latter kinase, called phospholamban kinase. Phospholamban kinase was purified approximately 42-fold with a yield of 11%. The purified fraction exhibits a specific activity of 6.5 nmol of phosphate incorporated into exogenous phospholamban per minute per milligram of protein. Phospholamban kinase appears to be a high molecular weight enzyme and presents a broad substrate specificity, synapsin-1, glycogen synthase, and smooth muscle myosin regulatory light chain being the best substrates. Phospholamban kinase phosphorylates synapsin-1 on a Mr 30 000 peptide. The enzyme exhibits an optimum pH of 8.6, a Km for ATP of 9 microM, and a requirement for Mg2+ ions. These data suggest that phospholamban kinase might be an isoenzyme of the multifunctional Ca2+/calmodulin-dependent protein kinase. Consequently we have searched for Mr 50 000-60 000 phosphorylatable subunits among cardiac sarcoplasmic reticulum proteins. A Mr 56 000 protein was found to be phosphorylated in the presence of Ca2+/calmodulin. Such phosphorylation alters the electrophoretic migration velocity of the protein. In addition, this protein that binds calmodulin was always found to be present in fractions containing phospholamban kinase activity. This Mr 56 000 protein is therefore a good candidate for being a subunit of phospholamban kinase. However, the Mr 56 000 calmodulin-binding protein and the Mr 53 000 intrinsic glycoprotein which binds ATP are two distinct entities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号