首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
恶臭假单胞菌JP-1能利用乙腈、丙腈、异丁腈、乙酰胺和丙酰胺作为生长的碳源和氮源。培养液中丙腈的代谢产物经证明是丙酰胺、丙酸和氨。腈水合酶是诱导酶,经丙腈诱导的适应细胞的腈水合酶活力比未适应的细胞高得多。生长细胞用0.3%丙腈诱导14小时后,即具有很高的转化丙烯腈成丙烯酰胺的活力,丙烯腈转化率为90%。除丙腈外,丙酰胺、异丁腈、正丁腈都是腈水合酶的有效诱导物。  相似文献   

2.
从长期被睛化物污染的土壤及含腈废水中筛选到9 7株腈化物的同化菌,其中丁腈同化菌ZBB-21休眠细胞显示了很高的丙烯酰胺形成活性,经鉴定该菌为棒状杆菌(Corynebacrerium sp.)。研究了该菌的最适生长条件,及其休眠细胞的最适水合反应条件。在选定条件下,连续反应4.5h,反应液中积累丙烯酰胺达270g/L,并且未检测出丙烯酸的生成。丙烯腈转化率和丙烯酰胺形成选择性均接近100%。  相似文献   

3.
在双水相系统中生物转化丙烯腈为丙烯酰胺的研究   总被引:2,自引:0,他引:2  
本文研究了以产腈水合酶的恶臭假单胞菌JP-1,在聚乙二醇/磷酸盐双水相系统中转化丙烯腈为丙烯酰胺的条件.双水相系统的组成为:聚乙二醇6000浓度0.05g/ml,磷酸氢二钾浓度0.20g/ml,丙烯腈浓度0.30mol/L,含酶细胞浓度0.10g/ml,pH9.0.25℃时转化率最高;pH10.0时酶最稳定;温度越低,酶的稳定性越好.还研究了在反应过程中间歇补充丙烯腈生成丙烯酰胺,以及从反应液中提纯丙烯酰胺的方法.  相似文献   

4.
丙烯腈氧化菌在腈纶废水处理中的应用   总被引:1,自引:0,他引:1  
从污泥中分离到一株能利用丙烯腈作为碳源和氮源的珊瑚色诺卡氏菌11号(Nocardiacorallina No.11),该菌能在较高浓度(200毫克/升至700毫克/升)丙烯腈下生长。当丙烯腈含量达800毫克/升至1000毫克/升时细胞置有所降低,但仍然保持99%的氧化能力。将该菌直接应用于滤塔,经接种挂膜后,处理腩纶废水,得到了良好的效果。生产滤塔运转结果,丙烯腈处理效果达99%以上,BOD,效果在85—90%之间。  相似文献   

5.
igenes eutrophus培养过程的研究表明,氮源的限制或缺乏可刺激细胞大量积累聚-β-羟基丁酸(PHB),但PHB合成期氮源的完全缺乏,会导致细胞的PHB合成速率迅速下降;氧的限制也可刺激A.eutrophus合成PHB,但胞内PHB的积累量远小于氮源控制下的情况。在细胞的不同生长期限制氮源的供应会明显影响PHB的发酵过程,当残留菌体浓度达到20g/L至30g/L时停止流加氨水,可以得到较好的发酵水平,细胞干重,PHB含量和PHB浓度可分别达到61.9g/L、80.5%和49.0g/L。  相似文献   

6.
从87株能利用甲烷的培养物中筛选到一株具有高甲烷单加氧酶活性的甲基单胞菌菌株(Methylomonas Z201)。研究了该菌的最佳生长条件和催化丙烯氧化积累环氧丙烷(PO)的最佳催化条件。在最佳条件下,Z201休止细胞的催化能力达60nmoIPO·min-1·mg-1干细胞.  相似文献   

7.
腈水合酶转化反应的影响因子   总被引:3,自引:1,他引:2  
棒状杆菌(corynebactcrium sp.)ZBB-21腈水合酶能高效地将丙烯腈转化为丙烯酰胺,其转化反应的最遣PH为8.0,最适转化反应温度为25℃。反应体系中加入微量的K+、Na+、Mg2+和Fe3+对酶的转化反应有明显的促进作用。过量丙烯腈(浓度为0.3mol/L以上)对酶活性有抑制作用,转化产物丙烯酰胺及其结构类似物丙烯酸是腈水合酶的竞争性抑制剂,其抑制常数K.分别为0.06mol/L和0.70mol,L,游离氰离子(CN-)的存在严重抑制丙烯酰胺的形成(K;=1.25 x 10-3mol/L)。  相似文献   

8.
应用富集培养和梯度底物浓度定向筛选技术,从长期被腈化物污染的土壤中筛选到一株产 3-氰基吡啶水合酶(3-cyanopyridine hydratase)活性较高的马红球菌(Rhodococcus e-qui)SHB-121.研究了该菌3-氰基吡啶水合酶的最适形成条件.在最适条件下,酶的比活力达5.3u/mg干细胞,比在初筛条件下的酶活力提高95倍,而在其细胞内共存的尼克酰胺(烟酰胺)水解酶活力很低.  相似文献   

9.
研究了产丙三醇假丝酵母(Candidaglycerolgenesis)产丙三醇及副产物与氧供给的关系。摇瓶试验发现其它营养条件一定,玉米浆添加量决定酵母量。在04%的玉米浆和装液比008时产丙三醇最高,副产物乙醇、乙酸和乙酸乙酯最小,玉米浆和装液比影响丙三醇和副产物的形成。在5L的反应器中以搅拌转速控制供氧水平,菌体生长阶段比耗氧速率为28mg/(g·h),在发酵阶段比耗氧速率16mg/(g·h)。适量供氧能得到高产率的丙三醇,而只产生微量的乙醇、乙酸和乙酸乙酯。  相似文献   

10.
在以丙烯腈为原料 ,微生物转化生产丙烯酰胺的过程中 ,酶催化反应是过程的关键。为了了解酶催化的动力学 ,本研究以自由细胞的酶为催化剂 ,进行了腈水合酶的反应动力学和失活动力学的研究。首先研究了菌体浓度、温度、pH值、丙烯腈浓度、丙烯酰胺浓度等对腈水合酶催化反应速度的影响。结果表明 ,在这些因素中 ,温度和丙烯酰胺浓度是最主要的影响因素。 2 8℃时酶活为 5 6 5 9u mL(菌液 ) ,在 5℃时的反应速率仅为 2 8℃时的11 72 % ,相应的表观酶活为 6 6 3u mL(菌液 )。而在丙烯酰胺 45 %浓度条件下的酶活大约只有丙烯酰胺 5 %浓度下的酶活的 1 2。经过对不同温度下的反应速度的研究 ,得到腈水合酶水合反应的活化能为 6 5 5 7kJ·mol- 1 。本文进一步研究了自由细胞状态下 ,菌体浓度、pH值、温度、丙烯腈浓度、丙烯酰胺浓度对腈水合酶失活的影响 ,得到了失活动力学。结果表明 ,在这些因素中 ,对酶失活影响的最主要因素还是温度和丙烯酰胺浓度。尤其当丙烯酰胺浓度到达 35 %时 ,酶活下降得很快 ,在 5 5h后 ,酶活几乎为零。而在丙烯酰胺浓度为 10 %的情况下 ,5 5h的酶活仍然还存在约 5 0 %。试验结果还表明 ,丙烯腈对酶的稳定性的影响很小。经过数据处理 ,得到的 2 8℃的酶失活速率常数为 5℃下的 2 1 7  相似文献   

11.
透明颤菌血红蛋白的表达及对基因工程菌的影响   总被引:4,自引:0,他引:4  
利用已克隆的透明颤菌(Vitreoscilla)血红蛋白基因(vgb),构建了一批复制类型和抗生标记不同的vgb表达载体,并就vgb基因表达及其对几种基因工程大肠杆菌的影响进行了初步研究。实验证明vgb基因的表达具有氧调控特性,在溶氧水平下跌至20%饱和度时迅速合成。Vgb基因的表达产物(Vitreoscilla Hemoglogin,VHb)可促进青霉素酰化酶和TNF、IL-2等基因工程菌在低氧条件下细胞生长和产物表达的状况,由于vgb基因的表达降低了细胞对氧的敏感程度,可望运用它来改善发酵过程中溶氧控制裕度。这些实验结果预示着vgb基因在耗氧生物过程中,如抗生素工业和基因工程菌高密度发酵,有着良好的应用前景。  相似文献   

12.
以丙烯腈为原料,微生物转化生产丙烯酰胺的过程中,酶催化反应是过程的关键。为了了解酶催化的动力学,本研究以自由细胞的酶为催化剂,进行了腈水合酶的反应动力学和失活动力学的研究。首先研究了菌体浓度、温度、pH值、丙烯腈浓度、丙烯酰胺浓度等对腈水合酶催化反应速度的影响。结果表明,在这些因素中,温度和丙烯酰胺浓度是最主要的影响因素。28℃时酶活为5659u/mL(菌液),在5℃时的反应速率仅为28℃时的11.72%,相应的表观酶活为663u/mL(菌液)。而在丙烯酰胺45%浓度条件下的酶活大约只有丙烯酰胺5%浓度下的酶活的1/2。经过对不同温度下的反应速度的研究,得到腈水合酶水合反应的活化能为65.57kJ·mol-1。本文进一步研究了自由细胞状态下,菌体浓度、pH值、温度、丙烯腈浓度、丙烯酰胺浓度对腈水合酶失活的影响,得到了失活动力学。结果表明,在这些因素中,对酶失活影响的最主要因素还是温度和丙烯酰胺浓度。尤其当丙烯酰胺浓度到达35%时,酶活下降得很快,在55 h后,酶活几乎为零。而在丙烯酰胺浓度为10%的情况下,55 h的酶活仍然还存在约50%。试验结果还表明,丙烯腈对酶的稳定性的影响很小。经过数据处理,得到的28℃的酶失活速率常数为5℃下的2177倍。经过对温度与失活速率常数的拟合,得到腈水合酶失活反应的活化能为9228kJ·mol-1。  相似文献   

13.
【目的】以丙烯腈为目标污染物,利用实验室已筛选获得的一株高效腈降解菌Rhodococus rhodochrous BX2,研究其对丙烯腈的降解特性,优化降解条件以提高菌株对丙烯腈的降解能力。【方法】通过单因素试验和响应面分析相结合的方法优化Rhodococus rhodochrous BX2对丙烯腈的降解条件。考察外加碳、氮源对BX2的生长及丙烯腈降解的影响,并确定其在丙烯腈合成废水中对丙烯腈的处理效果。【结果】菌株BX2优化后的最佳降解条件为:底物浓度403.51 mg/L、p H 7.44、温度34.46°C,在此条件下丙烯腈的降解率为95.1%。外加碳源为葡萄糖,或外加氮源为氯化铵对菌株生长及丙烯腈降解有明显的促进作用。菌株Rhodococus rhodochrous BX2能够高效降解合成废水中的丙烯腈,在30 h时其丙烯腈降解率可达89.4%。【结论】降解条件优化以及外源物质的添加强化了菌株对丙烯腈合成废水的处理效果,为生物法处理丙烯腈废水新方法的开发提供技术支持。  相似文献   

14.
从处理硫氰酸盐废水的混合菌中分离到一株兼性自养菌——中间硫杆菌C3。该菌既能利用有机化合物,如糖、有机酸、醇、蛋白胨、尿素和丙烯腈而异养生长,也能氧化硫代硫酸钠和硫氰酸盐自养生长。该菌氧化硫氰酸钠的能力强、速度快,48小时可氧化1200mg/L,硫氰酸钠既能作为能源,又能作为碳和氮源。低浓度的糖、醇和有机酸不影响菌对硫氰酸钠的氧化能力,而300mg肛丙烯腈和低浓度酵母浸出液及天冬酸钠对硫氰酸钠的氧化有抑制作用。氧化1n,肘硫氰酸钠形成ln·M硫酸盐和0.5加村的氨,pH变化不大。呼吸试验表明,氧的吸收与细胞的培养条件,以及反应时的细胞浓度和基质浓度有关。从加葡萄糖和硫氰酸钠的培养基中,收集的细胞悬液为一40mg/L,在300m喀/L硫氰酸钠时,氧的吸收最高。氧和硫氰酸钠的克分子比为1.52—1.61:1,呼吸商值为0.35。本文根据呼吸商值和代谢过程推论出硫氰酸钠生物氧化的反应式。  相似文献   

15.
本文报道了用补料分批培养方法控制限制生长底物的补料速率,获得一个限制生长底物浓度由10Ks缓慢地渐降的可控培养过程,以保证获得足够数量的准确的(Si,μi),从而得到Ks值。用该法测定了E.Coli ATCC 15224在葡萄糖限制生长培养中的Ks值及Monod方程表达式。通过该菌胞内β-半乳糖苷酶生成与细胞比生长速率相互关系的研究,导出描述该酶生成与培养液中限制生长底物浓度相互关系的曲线方程。它很好地表明了菌体生长的环境因子与胞内酶生成的相互关系及影响,并提示可获得最多胞内酶的培养途径。  相似文献   

16.
研究了利用粪产碱杆菌 (Alcaligenesfaecalis)发酵生产热凝胶的发酵条件 ,氮源是菌体生长的限制性底物 ,单纯地提高初始底物 (氮源 )浓度并不一定能促进细菌的生长和产物的合成。在分批发酵过程中 ,底物消耗导致培养环境pH的改变也是影响细菌进一步生长和产物合成的重要因素。通过增加培养基中初始氯化铵的浓度并同时控制发酵过程的pH条件 ,得到了较高的菌体浓度 ,热凝胶的合成水平也得到了显著提高。当培养基中NH4Cl浓度提高到3.6g/L时 ,菌体浓度达到72g/L ,热凝胶合成的产量可达 30.5g L ,比原来NH4Cl浓度为11g L时提高了51.7%。提高菌体浓度意味着需要提高溶氧水平来满足细菌的生长和代谢。初始氮源NH4Cl浓度的增加虽然能使菌体浓度得到提高 ,但发酵过程对溶氧的需求也相应增加 ,需要提高搅拌转速和通风以增加供氧水平。但高搅拌速率产生的高剪切力对热凝胶的凝胶性能将产生破坏作用 ,因此在发酵过程中需要综合考虑细菌培养密度对合成热凝胶产量和质量的影响。  相似文献   

17.
乙烷氧化菌的研究   总被引:4,自引:0,他引:4  
从油田土中分离得10株乙烷氧化菌。其中七株与My~obacterium lacticolum很相近,但能还原硝酸盐和利用乙烷良好生长,因此定名为Mycobacterium lacticolum var.Etha—micumo另外属于Pseudomona的两株菌和属于Bacterium的一株菌,在研究过程中丧失了氧化乙烷的能力。Mycobacterium lacticolum var.Ethanicum生长要求生长素,如尼古丁酸和稚生素B1;最适pH是7.0;最适乙烷浓度为30%。这种乙烷氧化菌能利用乙烷、丙烷和戊烷良好生长,并能微弱地利用丁烷、己烷、液体石蜡和石蜡生长,但在甲烷、庚烷、十四碳烷、烯烃和CO2及H2的混合气圈存在下不能生长。除烃类化合物外,还能利用多种有机物作为碳及能源。这种菌能利用NH4NO3,(NH4)2SO4,KNO3,蛋白腺或天门冬素作为氮源,但不利用亚硝酸盐、三乙胺和吡啶。NH4NO3是最好的氮源。  相似文献   

18.
沼泽红假单胞菌乙酸光合放氢研究   总被引:21,自引:0,他引:21  
依据光合细菌生长代谢特性和有机废水降解主要产物类型,11种有机物被用于沼泽红假单胞菌(Rhodopseudomonas palustris)Z菌株的光合产氢研究,其中,乙酸反应体系产氢活性最高。在此基础上,研究了该菌株的生长与产氢动力学行为,探求了影响该菌株光合放氢的主要限制性影响因素。结果表明,该菌株产氢与生长部分相关。种子培养基和菌龄对产氢活性有明显影响。细胞最适产氢和生长所需要的光照强度和温度基本一致。当种子来源于硫酸铵高菌龄预培养物或谷氨酸钠对数期预培养物时,该菌株产氢活性显著增加,产氢延滞期明显缩短。氧浓度和接种量对产氢活性也有显著影响。供氢体和氮源浓度直接决定细胞的生长与光放氢活性。在低于70 mmol/L乙酸钠和15 mmol/L谷氨酸钠时,产氢活性随底物浓度的增加而增强。谷氨酸钠浓度高于15mmol/L时,由于游离NH4+的出现,产氢活性受到抑制,但却明显刺激细胞的生长。在标准状况下,该菌株的最大产氢速率可达19.4 mL·L-1·h-1。  相似文献   

19.
把大肠杆菌β一半乳糖苷酶基因克隆到带有酵母半乳糖可诱导启动子GALl的穿梭表达质粒pYES2中,并把得到的重组质粒分别转化到两种不同遗传性状的宿主菌中,其中一株菌为蛋白酶活性缺失90%以上的pep4-3突变菌株。通过比较两株重组菌产生的β一半乳糖苷酶活性水平发现在所述实验条件下,蛋白酶缺失突变菌株中产生的β一半乳糖苷酶活水平不仅均要高于另一对照菌株,并且pep4-3突变菌株表现出受葡萄糖阻遏的严紧程度高及对诱导反应迅速等特点。此外,带有重组质粒的pep4-3突变菌株在葡萄糖阻遏培养基中最大生长量和重组对照菌株基本相同,但β一半乳糖苷酶在pep4-3突变菌株中的表达对细胞生长的影响明显小于对照菌株。  相似文献   

20.
【目的】对重组大肠杆菌BL21(DE3)/pET22b-β-ffase进行高密度发酵产β-呋喃果糖苷酶工艺研究。【方法】比较溶氧反馈补料和指数流加补料对重组菌发酵产酶的影响,对不同比生长速率和诱导时机进行优化。【结果】确定了双阶段指数流加过程中重组菌生长的比生长速率,分别控制诱导前期比生长速率为0.20 h~(-1),诱导后期比生长速率为0.13 h~(-1),诱导时机为指数中期。获得细胞干重约为51 g/L,最高酶活达到1.79×10~5 U/L,单位菌体产酶量为3 510 U/g,单位产酶速率达到3.58×10~4 U/(L·h),生物量、单位菌体产酶量和产酶速率分别是指数流加未优化前的1.8、1.7和3.0倍。【结论】双阶段指数流加补料工艺能有效提高β-呋喃果糖苷酶的产酶量,为β-呋喃果糖苷酶的进一步工业化奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号