首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and aim

Significant differences in tree growth were observed in an exotic pine plantation under different harvest residue management regimes at ages 2–10 years. However, the variations in tree growth between residue management treatments could not be explained by soil and foliar nutrient analyses, except by potassium (K) concentration. Therefore, this study determined the carbon isotope composition (δ13C) and oxygen isotope composition (δ18O) of current and archived foliar samples from the exotic pine plantation to establish relationships with foliar K concentration and tree growth indices as a means to determine changes in stomatal conductance (gs) and photosynthetic rate (Amax) or water use efficiency (WUE), and therefore understand the variations in tree growth across treatments.

Methods

The harvest residue treatments were: (1) residue removal, RR0; (2) single level residue retention, RR1; and (3) double level residue retention, RR2. Foliar δ13C and δ18O were determined for samples at ages 2, 4, 6 and 10 years, and the atmospheric 13C discrimination (Δ13C), intercellular CO2 concentration (Ci) and WUE were determined from the δ13C data. Litter needle δ13C and δ18O were also determined over 15 months between ages 9 and 10 years. These parameters or variables where correlated to each other as well as to the periodic mean annual increment of basal area (PAIB) and the periodic mean annual increment of tree diameter at breast height (PAID) across the treatments and over time. Foliar δ13C and δ18O were also related to published data of foliar K concentrations of the same trees.

Results

Significant variations of foliar δ13C, and therefore WUE and Δ13C, across treatments were only observed at ages 4 and 10 years old, and foliar δ18O at age 4 years old only. The results showed increasing foliar δ13C, δ18O and WUE, and decreasing Δ13C and Ci, from RR0 to RR2 treatments. However, while the WUE was positively related to the PAID and PAIB at age 4 years, it was negatively related to PAID and PAIB at age 10 years old. Litter needle δ13C, indicative of WUE, was also negatively related to the PAID at age 10 years old. . At age 4 years, foliar δ13C and δ18O were positively related with a steep slope of 7.70 ‰ across treatments, and that both isotopes were positively related to foliar K concentrations. Similarly, δ18O was negatively related to the Δ13C. No significant relationship can be determined between foliar δ13C, or Δ13C, and δ18O at age 10 years old. In addition, WUE was increasing (p?<?0.001) and Δ13C and Ci decreasing (p?<?0.001) with decreasing PAID over time.

Conclusions

The variations at age 4 years in foliar δ13C or Δ13C and δ18O and increasing WUE with increasing growth rate suggest growth induced water-stress with increasing residue-loading rate as a result of the nutritional effect of the harvest residues on tree growth. At age 10 years, the negative relationships between WUE and PAID indicate nutrient limitation has an over-riding effect on δ13C variations rather than gs. This was due to the lack of a significant relationship between foliar Δ13C and δ18O at this age, as well as over time.  相似文献   

2.
The efficiency of water use to produce biomass is a key trait in designing sustainable bioenergy‐devoted systems. We characterized variations in the carbon isotope composition (δ13C) of leaves, current year wood and holocellulose (as proxies for water use efficiency, WUE) among six poplar genotypes in a short‐rotation plantation. Values of δ13Cwood and δ13Cholocellulose were tightly and positively correlated, but the offset varied significantly among genotypes (0.79–1.01‰). Leaf phenology was strongly correlated with δ13C, and genotypes with a longer growing season showed a higher WUE. In contrast, traits related to growth and carbon uptake were poorly linked to δ13C. Trees growing on former pasture with higher N‐availability displayed higher δ13C as compared with trees growing on former cropland. The positive relationships between δ13Cleaf and leaf N suggested that spatial variations in WUE over the plantation were mainly driven by an N‐related effect on photosynthetic capacities. The very coherent genotype ranking obtained with δ13C in the different tree compartments has some practical outreach. Because WUE remains largely uncoupled from growth in poplar plantations, there is potential to identify genotypes with satisfactory growth and higher WUE.  相似文献   

3.
Plant species growing in shallow-soil habitat are likely to experience water deficit especially in seasonally dry or arid regions. However, only scarce studies focused on their water-use strategies. The current study aimed to reveal water-use strategies of different species growing on continuous dolomite outcrops (a typical shallow-soil habitat) in subtropical China that relied on different water sources, and to investigate the differences between narrow endemic and widespread species, based on season variations in leaf δ13C values. Leaf samples of six plant species (Radermachera sinica, Sapium rotundifolium, Sterculia euosma, Schefflera octophylla, Alchornea trewioides, and Vitex negundo, in different life-forms and leaf phenologies) were collected for carbon isotope measurements in the wet and dry seasons, respectively. Contrary to the expectation, the evergreen big shrub species, S. octophylla, which always relied on deep water sources, exhibited the most positive δ13C values (high water-use efficiency, WUE), indicating more conservative water-use strategies. While the two deciduous small shrubs, A. trewioides and V. negundo, which always relied on shallow water sources, exhibited the most negative δ13C values (low WUE). This result was associated with their short life spans, indicating an opportunistic water-use strategy. Leaf δ13C values of almost all (except for S. octophylla) the selected species were significantly (P < 0.05) higher in the dry season than in the wet season. This indicated that it was a common strategy for species in rocky karst habitat to improve their WUE in dry season. Despite the similar water sources utilized by the selected three tree species, the widespread one (R. sinica) exhibited greater improvement in leaf δ13C values than the narrow endemic ones (S. rotundifolium and S. euosma). This suggested that the widespread tree species had more flexible water-use strategies. It was further speculated that broad spatial distribution of widespread species may contribute to their highly plastic responses to changes in environmental conditions rather than always maintaining high WUE.  相似文献   

4.
Stable carbon isotope signatures are often used as tracers for environmentally driven changes in photosynthetic δ13C discrimination. However, carbon isotope signatures downstream from carboxylation by Rubisco are altered within metabolic pathways, transport and respiratory processes, leading to differences in δ13C between carbon pools along the plant axis and in respired CO2. Little is known about the within-plant variation in δ13C under different environmental conditions or between species. We analyzed spatial, diurnal, and environmental variations in δ13C of water soluble organic matter (δ13CWSOM) of leaves, phloem and roots, as well as dark-respired δ13CO213Cres) in leaves and roots. We selected distinct light environments (forest understory and an open area), seasons (Mediterranean spring and summer drought) and three functionally distinct understory species (two native shrubs—Halimium halimifolium and Rosmarinus officinalis—and a woody invader—Acacia longifolia). Spatial patterns in δ13CWSOM along the plant vertical axis and between respired δ13CO2 and its putative substrate were clearly species specific and the most δ13C-enriched and depleted values were found in δ13C of leaf dark-respired CO2 and phloem sugars, ~?15 and ~?33 ‰, respectively. Comparisons between study sites and seasons revealed that spatial and diurnal patterns were influenced by environmental conditions. Within a species, phloem δ13CWSOM and δ13Cres varied by up to 4 ‰ between seasons and sites. Thus, careful characterization of the magnitude and environmental dependence of apparent post-carboxylation fractionation is needed when using δ13C signatures to trace changes in photosynthetic discrimination.  相似文献   

5.
Cultivars with low stomatal conductance (gs) may show high water use efficiency (WUE) under drought conditions, but under optimal conditions low gs may result in low vigour. A combination of thermal imaging and carbon isotope composition (δ13C) analysis offers potential for screening simultaneously for both high gs and high WUE. Ten cultivars of strawberry (Fragaria × ananassa Duch.) were grown in well watered or water limited conditions. Thermal images were taken of the plants, with various approaches to determine the optimal protocol for detecting variation in gs, including use of reference leaves, grids to maintain leaves horizontal, and collection of meteorological data in synchrony with thermal images. δ13C of leaves, fruit, and crowns was determined. An index of gs derived from the temperature of horizontal leaves and the temperature of wet and dry references showed significant differences between cultivars and between well watered and water limited plants, as did gs estimated from leaf temperature, the temperature of a dry reference, and humidity. Thermal imaging indicated low gs in ‘Elsanta’ and ‘Totem’ and relatively high gs in well watered ‘Elvira’, ‘Florence’ and ‘Cambridge Favourite’. δ13C of all plant material was higher in water limited than well watered plants and showed significant differences between cultivars. In one experiment leaf δ13C indicated lowest WUE in ‘Elvira’ and highest WUE in ‘Totem’. δ13C was inversely correlated with an index of gs derived from thermal imaging. Although the results indicate substantial variation in gs and WUE between cultivars, generally all cultivars responded to water deficit by lowering gs and hence increasing WUE.  相似文献   

6.

Background and aims

Acacia senegal, a leguminous dryland tree, is economically and ecologically important to sub-Saharan Africa. Water-use efficiency (WUE) and biological nitrogen fixation (BNF) are fundamental to plant productivity and survival. We quantify provenance differences in WUE, BNF, photosynthesis, biomass and gum arabic production from A. senegal assessing genetic improvement potential.

Methods

Using stable isotope ratios, we determined WUE (δ13C) and BNF (δ15N) from provenances of mature A. senegal in field-trials (Senegal), sampling leaves at the beginning (wet) and end (dry) of the rainy season. Seedling provenance trials (UK) determined photosynthesis, and biomass and δ13C in relation to water table. Environmental data were characterised for all provenances at their sites of origin.

Results

Provenances differed in both δ13C and δ15N. Gum yield declined with increasing WUE. Virtually no BNF was detected during the dry season and seedlings and mature trees may have different WUE strategies. Wind speed and soil characteristics at provenance origin were correlated with isotope composition and gum production.

Conclusion

Provenance differences suggest that selection for desirable traits, e.g., increased gum production, may be possible. As ecological strategies relate to native locality, the environmental conditions at plantation site and provenance origin are important in assessing selection criteria.  相似文献   

7.
Ecologists and physiologists have documented extensive variation in water use efficiency (WUE) in Arabidopsis thaliana, as well as association of WUE with climatic variation. Here, we demonstrate correlations of whole-plant transpiration efficiency and carbon isotope composition (δ13C) among life history classes of A. thaliana. We also use a whole-plant cuvette to examine patterns of co-variation in component traits of WUE and δ13C. We find that stomatal conductance (g s) explains more variation in WUE than does A. Overall, there was a strong genetic correlation between A and g s, consistent with selection acting on the ratio of these traits. At a more detailed level, genetic variation in A was due to underlying variation in both maximal rate of carboxylation (V cmax) and maximum electron transport rate (Jmax). We also found strong effects of leaf anatomy, where lines with lower WUE had higher leaf water content (LWC) and specific leaf area (SLA), suggesting a role for mesophyll conductance (g m) in variation of WUE. We hypothesize that this is due to an effect through g m, and test this hypothesis using the abi4 mutant. We show that mutants of ABI4 have higher SLA, LWC, and g m than wild-type, consistent with variation in leaf anatomy causing variation in g m and δ13C. These functional data also add further support to the central, integrative role of ABI4 in simultaneously altering ABA sensitivity, sugar signaling, and CO2 assimilation. Together our results highlight the need for a more holistic approach in functional studies, both for more accurate annotation of gene function and to understand co-limitations to plant growth and productivity.  相似文献   

8.
The seasonal changes of pigments and stable carbon isotope composition (δ13C values) were investigated in needles of Qilian juniper (Sabina przewalskii Kom.) from two typical sites, one drier and the other wetter, in the Qilian Mountains, China. The anthocyanins and rhodoxanthin content from both sites were much higher in winter than in summer. Plant needles contained more carotenoids and xanthophylls in winter at the wetter site, while no seasonal difference appeared at the drier site. However, lower chlorophyll content and higher proline and δ13C were observed at the drier site. Average tree height was shorter at the drier site trees than at the wetter site. Our results suggested that under natural conditions, pigmentation in S. przewalskii may serve to improve the energy balance of the photosynthetic apparatus under cold and drought stresses. Proline and δ13C could be used as drought indicators for S. przewalskii.  相似文献   

9.
He C X  Li J Y  Guo M  Wang Y T  Chen C 《农业工程》2008,28(7):3008-3016
As main photosynthetic organs, leaves are very sensitive to exterior environments. Water deficiency obviously affects the biological and physiological characteristics of leaves. Xylem pathways increase when trees grow tall, which results in the increase in water gravity as well as pathway resistance. Accordingly, the physiological characteristics of leaves change along with tree height. In this research, the photosynthetic characteristics and carbon isotope ratio (δ13C) in the leaves of 4 tree species, Platanus hispanica, Robinia pseudoacacia, Fraxinus chinensis and Ginkgo biloba, were measured. The results showed that the leaf photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Cond) and internal CO2 concentration (Ci) reduced along with tree height, while the leaf δ13C increased along with tree height. The One Way ANOVA and LSD tests showed that the leaf photosynthetic characteristics and δ13C varied significantly at different tree heights (P < 0.05). The decrease in leaf photosynthetic capability and the increase in δ13C along with tree height indicate that the leaves at the tree tops suffer from water stress. These results support the hydraulic limitation hypothesis.  相似文献   

10.
We measured the carbon and oxygen isotopic composition of stem cellulose of Pinus sylvestris, Picea abies, Fagus sylvatica and Fraxinus excelsior. Several sites along a transect of a small valley in Switzerland were selected which differ in soil moisture conditions. At every site, six trees per species were sampled, and a sample representing a mean value for the period from 1940 to 1990 was analysed. For all species, the mean site δ13C and δ18O of stem cellulose are related to the soil moisture availability, whereby higher isotope ratios are found at drier sites. This result is consistent with isotope fractionation models when assuming enhanced stomatal resistance (thus higher δ13C of incorporated carbon) and increased oxygen isotope enrichment in the leaf water (thus higher δ18O) at the dry sites. δ18 O-δ13C plots reveal a linear relationship between the carbon and oxygen isotopes in cellulose. To interpret this relationship we developed an equation which combines the above-mentioned fractionation models. An important new parameter is the degree to which the leaf water enrichment is reflected in the stem cellulose. In the combined model the slope of the δ18O-δ13C plot is related to the sensitivity of the pi/pa of a plant to changing relative humidity.  相似文献   

11.
Summary

δ13C measurements were made of dissolved inorganic C, and of submerged benthic cyanobacteria, algae and bryophytes, from Allt Meall nan Damh, a burn at Ardeonaig, Perthshire. The δ13C of the CO2, HCO3/- and CO3/2- components of the inorganic C were computed, and the Δ values of the organic C in the photolithotrophs were then calculated relative to dissolved CO2. The decreasing order of A values in the Ardeonaig Burn is Lemanea and bryophytes ≥ green macroalgae and Audouinella > diatom mats, which is the same as in the Dighty Burn. However, the Δ values of Lemanea and the bryophytes, which depend on diffusive CO2 entry, are lower at Ardeonaig than in the Dighty Burn, suggesting greater diffusive limitation to photosynthesis in the Ardeonaig Burn. It is not easy to relate this difference in Δ values in Lemanea to the higher C:N atomic ratio in the Ardeonaig Burn (21.2 ± 0.64) than in the Dighty Burn (9.5–11.0). The Δ values relative to HCO3/- for the HCO3/--using diatom mat in the Ardeonaig Burn is also lower than that in the Dighty Burn; this is consistent with a greater diffusion limitation of photosynthesis in the thicker mats in the Ardeonaig Burn. The δ13C of a Lyngbya mat overlying a Lemanea population stranded by low summer water levels indicates that some of the C fixed by the HCO3/--using Lyngbya comes from respiration of low-δ13C inorganic C by the Lemanea which is shaded by the Lyngbya. The δ13C values of Mesotaenium in its mucilage sheath on a thinly vegetated bank is suggestive of predominant use of the higher CO2 concentrations with lower δ13C from groundwater rather than of atmospheric CO2 yielding lower dissolved CO2 concentrations with a higher δ13C value.  相似文献   

12.
Several previous studies have investigated the use of the stable hydrogen and oxygen isotope compositions in plant materials as indicators of palaeoclimate. However, accurate interpretation relies on a detailed understanding of both physiological and environmental drivers of the variations in isotopic enrichments that occur in leaf water and associated organic compounds. To progress this aim we measured δ18O and δ2H values in eucalypt leaf and stem water and δ18O values in leaf cellulose, along with the isotopic compositions of water vapour, across a north-eastern Australian aridity gradient. Here we compare observed leaf water enrichment, along with previously published enrichment data from a similar north Australian transect, to Craig–Gordon-modelled predictions of leaf water isotopic enrichment. Our investigation of model parameters shows that observed 18O enrichment across the aridity gradients is dominated by the relationship between atmospheric and internal leaf water vapour pressure while 2H enrichment is driven mainly by variation in the water vapour—source water isotopic disequilibrium. During exceptionally dry and hot conditions (RH < 21%, T > 37 °C) we observed strong deviations from Craig–Gordon predicted isotope enrichments caused by partial stomatal closure. The atmospheric–leaf vapour pressure relationship is also a strong predictor of the observed leaf cellulose δ18O values across one aridity gradient. Our finding supports a wider applicability of leaf cellulose δ18O composition as a climate proxy for atmospheric humidity conditions during the leaf growing season than previously documented.  相似文献   

13.
This study focused on the potential of specific leaf area, stomatal density and stomatal pore surface as easy-to-measure plant parameters in low cost biomonitoring of urban habitat quality with a high spatial resolution. The study area (81.5 km2) was the city of Gent, Belgium. In the study area 148 sampling locations were identified within 4 land use classes. Specific leaf area, stomatal density, stomatal pore surface, minimal stomatal resistance, chlorophyll a and b, C and N content, δ13C and δ15N in the leaf samples of a common herbaceous plant Taraxacum officinalis were measured. The stomatal pore surface and minimal stomatal resistance of T. officinalis varied significantly between land use classes. In the harbor and industry land use class and the urban land use class a 27% and 21% lower mean stomatal pore surface at the abaxial leaf surface, and a 29% and 27% lower mean stomatal pore surface at the adaxial leaf surface was observed compared to that in the pasture land use class. The minimal stomatal resistance at the abaxial leaf surface was significantly higher in the urban land use class and harbor and industry land use class by 28% and 29%, respectively compared to that in the pasture land use class. In addition, urbanized and industrial land use classes as the harbour and industry and the urban land use classes showed significantly lower δ13C values compared to pasture land use class. The specific leaf area, stomatal parameters and δ13C data were geostatistically analyzed to understand their spatial variation. The spatial distributions of stomatal pore surface and minimal stomatal resistance varied considerably across the study area, indicating a different habitat quality from the harbour area in the north, over the city centre in the middle and the industrial areas in the south, compared to off city areas. Spatial patterns of δ13C showed depleted δ13C levels in city areas indicating the diluted δ13C in the urban atmosphere by fuel combustion. We concluded that stomatal characteristics seem to be the most promising parameter for estimating urban habitat quality.  相似文献   

14.
Tree-ring δ(13) C is often interpreted in terms of intrinsic water-use efficiency (WUE) using a carbon isotope discrimination model established at the leaf level. We examined whether intra-ring δ(13) C could be used to assess variations in intrinsic WUE (W(g), the ratio of carbon assimilation and stomatal conductance to water) and variations in ecosystem WUE (W(t) , the ratio of C assimilation and transpiration) at a seasonal scale. Intra-ring δ(13) C was measured in 30- to 60-μm-thick slices in eight oak trees (Quercus petraea). Canopy W(g) was simulated using a physiologically process-based model. High between-tree variability was observed in the seasonal variations of intra-ring δ(13) C. Six trees showed significant positive correlations between W(g) calculated from intra-ring δ(13) C and canopy W(g) averaged over several days during latewood formation. These results suggest that latewood is a seasonal recorder of W(g) trends, with a temporal lag corresponding to the mixing time of sugars in the phloem. These six trees also showed significant negative correlations between photosynthetic discrimination Δ calculated from intra-ring δ(13) C, and ecosystem W(t), during latewood formation. Despite the observed between-tree variability, these results indicate that intra-ring δ(13) C can be used to access seasonal variations in past W(t).  相似文献   

15.
Understanding the response of long-lived species to natural climatic variability at multiple scales is a prerequisite for forecasting ecosystem responses to global climate change. This study investigated the response of piñon pine (Pinus edulis) to natural climatic variability using information on physiology and growth as recorded in leaves and tree rings. δ13C of annual leaf cohorts (δ13Cleaf) and tree rings (δ13Cring) were measured at an ecotonal/xeric site and a mid-range/mesic site. Ring width indices (RWI) were used to estimate annual growth of individual trees. Relationships between seasonal and annual climate parameters and δ13C and growth were investigated. δ13C–climate relationships were stronger for δ13Cleaf than for δ13Cring especially at the xeric site. The mean monthly maximum summer temperatures over May through September (summer T max) had the strongest influence on δ13Cleaf. There was a strong negative relationship between RWI with summer T max and a strong positive relationship between RWI with October to October precipitation (water–year PPN) at both sites. This suggests that piñon pine populations could be vulnerable to decreased growth and, perhaps mortality, in response to warmer, drier conditions predicted by models of global climate change.  相似文献   

16.
The Climate Change Experiment (CLIMEX) is a unique large scale facility in which an entire undisturbed catchment of boreal vegetation has been exposed to elevated CO2 (560 ppm) and temperature (+3°C summer, +5°C winter) for the past three years with all the soil-plant-atmosphere linkages intact. Here, carbon isotope composition and stomatal density have been analysed from sequential year classes of needles of mature Scots pine trees (Pinus sylvestris L.) to investigate the response of time-integrated water-use efficiency (UWE) and stomatal density to CO2 enrichment and climate change. Carbon isotope discrimination decreased and WUE increased in cohorts of needles developing under increased CO2 and temperature, compared to needles on the same trees developing in pretreatment years. Mid-season instantaneous gas exchange, measured on the same trees for the past four years, indicated that these responses resulted from higher needle photosynthetic rates and reduced stomatal conductance. Needles of P. sylvestris developing under increased CO2 and temperature had consistently lower stomatal densities than their ambient grown counterparts on the same trees. The stomatal density of P. sylvestris needles was inversely correlated with δ13C-derived WUE, implying some effect of this morphological response on leaf gas exchange. Future atmospheric CO2 and temperature increases are therefore likely to improve the water economy of P. sylvestris, at least at the scale of individual needles, by affecting stomatal density and gas exchange processes.  相似文献   

17.
To gain further insight into comparative ecophysiology of different leaf types, water-use efficiency (WUE) and internal leaf carbon dioxide concentration (Ci) were estimated in the field for juvenile leaves and phyllodes of Acacia koa by carbon dioxide and water vapor exchange using a closed system infrared gas analyzer and humidity sensor, and by δ13C measurements. Both methods indicate that phyllodes possessed higher WUE and lower Ci than juvenile leaves. However, Ci predicted by δ13C for juvenile leaves and phyllodes was lower than the average gas exchange estimated values of Ci and closer to minimal gas exchange estimated values of Ci. It is suggested that δ13C may be influenced more during times of maximal assimilation and leaf expansion than during maintenance.  相似文献   

18.
Biogenic calcretes associated with a regional Cretaceous to Paleogene subaerial unconformity and an intraformational composite (polygenic) surface in Upper Cretaceous intra-platform peritidal successions in central Dalmatia and eastern Istria, Croatia (Adriatic-Dinaridic Carbonate Platform), were analyzed for their δ13C and δ18O signatures in order to provide insight into the conditions of subaerial exposure and calcrete development. The distinctly negative δ13C signatures of biogenic calcretes marking the regional subaerial unconformity differ considerably from the δ13C values of the host marine limestones. This indicates carbon isotope exchange of primary marine CaCO3 with CO2 released by root and rhizomicrobial respiration and subsequent precipitation of pedogenic calcrete. The range of δ13C (from ?13.1 to ?8.2 ‰ Vienna PeeDee Belemnite standard, VPDB) and δ18O (from ?10.1 to ?6.1 ‰ VPDB) values of calcretes are similar to those reported from calcretes elsewhere, and the δ13C values of biogenic calcretes with typical Microcodium aggregates (?13.1 to ?12.3 ‰ VPDB) at the ?ibenik locality are very close to, or at the lower limit of, values for soil carbonates formed in isotopic equilibrium with soil CO2. These values are expected for authigenic pedogenic carbonates formed under the influence of C3 plant communities, without influence from heavier carbon from pre-existing carbonate and lack of input of atmospheric CO2. Such low δ13C values support the interpretation of Microcodium aggregates as being precipitated under a direct biological control within the soil, although the relationship between formation mechanisms and stable isotope signatures of Microcodium needs further investigation. The δ13C values (?4.4 to ?3.6 ‰ VPDB) of rhizogenic calcretes formed inside firmground Thalassinoides burrows of the composite surface at the ?ibenik locality are more negative than the δ13C values of the host marine limestones, which confirms that the composite surface went through a phase of meteoric pedo(dia)genesis. However, the overall δ13C values of calcretes are less negative than expected, which might reflect contamination from associated primary marine carbonate. This study represents the first detailed stable isotope investigation of calcretes from carbonate successions of the External Dinarides, and the results may be applied to discontinuities present in other shallow-water carbonate rock successions.  相似文献   

19.
Cotton (Gossypium hirsutum L. cv. CS50) plants were grown at two levels of relative humidity (RH) and sprayed daily with abscisic acid (ABA) at four concentrations. Plants grown at lower humidity had higher transpiration rates, lower leaf temperatures and lower stomatal conductance. Plant biomass was also reduced at low humidity. Within each humidity environment, increasing ABA concentration generally reduced stomatal conductance, evaporation rates, superficial leaf density and plant biomass, and increased leaf temperature and specific leaf area. As expected, decreased stomatal conductance resulted in decreased carbon isotope discrimination in leaf material ( Δ 13Cl). Plants grown at low humidity were more enriched in 18O than those grown at high RH, as theory predicts. Within each humidity environment, increasing ABA concentration increased oxygen isotope enrichment of leaf cellulose ( Δ 18Oc) and whole‐leaf tissue ( Δ 18Ol). Values of Δ 13Cl and Δ 18Ol predicted by theoretical models were close to those observed, accounting for 79% of the measured variation in Δ 13Cl and 95% of the measured variation in Δ 18Ol. Supporting theory, Δ 13Cl and Δ 18Ol in whole‐leaf tissue were negatively related.  相似文献   

20.
The eastern hive bee Apis cerana is a major honeybee species in Asia providing numerous ecosystem services. Understanding how much the honeybees depend on natural and human-influenced plants and landscapes in different climates is important could contribute to evaluate how wild honeybees use food resources and to measure the ecosystem services. We investigated the effects of land use and climate changes on stable nitrogen and carbon isotope ratios in wild populations of A. cerana. In populations from 139 individual sites throughout Japan, we measured nitrogen (δ15N) and carbon (δ13C) stable isotope ratios and analyzed the effects of land use and climate. Our results showed that forested areas and annual precipitation had significant effects on δ15N, and that paddy fields and urban areas had significant effects on δ13C. These results suggest that A. cerana sensibly uses available food resources in the various environments and that stable nitrogen and carbon isotope ratios clearly reflect the effects of land use and climate changes on the populations of A. cerana. Thus, stable nitrogen and carbon isotope ratios in A. cerana, which widely distributes in Asia, can be used as indicators of the environments, such as land use and climate, of an area within its foraging range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号