首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified a new wheat PKABA1/-like protein kinase gene, TaPK3/, that is expressed in greening wheat seedlings. TaPK3 has high sequence homology (97% similarity with some sequence diversity at the 3' end) to the wheat PKABA1 protein kinase mRNA, which is upregulated by cold-temperature treatment, dehydration and abscisic acid (ABA). Use of a TaPK3 gene-specific probe has revealed that TaPK3 is differentially expressed with respect to PKABA1. TaPK3 mRNA accumulates in greening shoot tissue of wheat, but is not affected by dehydration, cold-temperature treatment or ABA. Based on sequence and expression differences, we conclude that expression of the PKABA1/-like protein kinases is not limited to stress responses.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
MicroRNAs (miRNAs) are tiny non-coding regulatory molecules that modulate plant’s gene expression either by cleaving or repressing their mRNA targets. To unravel the plant actions in response to various environmental factors, identification of stress related miRNAs is essential. For understanding the regulatory behaviour of various abiotic stresses and miRNAs in wheat genotype C-306, we examined expression profile of selected conserved miRNAs viz. miR159, miR164, miR168, miR172, miR393, miR397, miR529 and miR1029 tangled in adapting osmotic, salt and cold stresses. The investigation revealed that two miRNAs (miR168, miR397) were down-regulated and miR172 was up-regulated under all the stress conditions. However, miR164 and miR1029 were up-regulated under cold and osmotic stresses in contrast to salt stress. miR529 responded to cold alone and does not change under osmotic and salt stress. miR393 showed up-regulation under osmotic and salt, and down-regulation under cold stress indicating auxin based differential cold response. Variation in expression level of studied miRNAs in presence of target genes delivers a likely elucidation of miRNAs based abiotic stress regulation. In addition, we reported new stress induced miRNAs Ta-miR855 using computational approach. Results revealed first documentation that miR855 is regulated by salinity stress in wheat. These findings indicate that diverse miRNAs were responsive to osmotic, salt and cold stress and could function in wheat response to abiotic stresses.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Quaternary ammonium compounds in plants in relation to salt resistance   总被引:3,自引:0,他引:3  
Fourteen plant species exhibiting a wide range of salt resistance as halophytes, semi-resistant glycophytes and sensitive glycophytes, have been grown in nutrient solution culture under low and high salt conditions. Inorganic analyses and shoot sap osmotic pressure values of these plants confirm that osmotic compensation at high salt levels is largely achieved by the accumulation of Na salts. Choline was found in shoots and roots in the range 1.0-0.2 μmol g fr. wt?1 and varied little following salt stress. Trigonelline was found in some of the sensitive glycophytes and did not increase significantly in stressed plants. Betaine levels were high (10 μmol g fr. wt?1) in the shoot of the halophytes at low salt conditions, lower values (1–10 μmol g fr. wt?1) were found in the semi-resistant glycophytes and none detected in the sensitive glycophytes. In the two resistant groups betaine accumulated to higher levels following NaCl stress. Shoot betaine levels always exceeded root levels. Proline occurred in all plants and in all cases was accumulated following NaCl stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号