首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
The development of monoclonal antibodies has permitted the identification of several ovarian-tumor-associated antigens which might serve as targets for serotherapy in vivo. With the exception of antibodies directed against growth factor receptors, unmodified monoclonal reagents must activate complement (C') components or bind effector cells to destroy tumor targets. Antibody-dependent cell-mediated cytotoxicity (ADCC) may be particularly important for eliminating tumor cells in vivo. A shortage of functionally active effector cells can limit the efficacy of serotherapy with heteroantisera or monoclonal reagents. The use of immunostimulants such as Corynebacterium parvum has increased the number and activity of effector cells for ADCC within the peritoneal compartment of mice and of patients with ovarian cancer. Intraperitoneal serotherapy can achieve direct contact between antibody and microscopic deposits of ovarian tumor cells which persist following cytoreductive operations and cytotoxic chemotherapy. Conjugation of monoclonal antibodies with radionuclides, drugs or toxins might increase the potency of serotherapy and circumvent the effector shortage. Clinical studies to date have evaluated radionuclide conjugates for imaging and for therapy. Patients with a small volume of disease have responded to treatment. Preclinical models suggest that drug and toxin conjugates might also prove active. Recent studies have demonstrated a synergistic interaction between different immunotoxins. Ovarian carcinoma is likely to be a valuable clinical model for evaluating immunoconjugates which react with epithelial tumor cells.  相似文献   

2.
Treatment of high-risk neuroblastoma (NB) represents a major challenge in paediatric oncology. Alternative therapeutic strategies include antibodies targeting the disialoganglioside GD(2) , which is expressed at high levels on NB cells, and infusion of donor-derived natural killer (NK) cells. To combine specific antibody-mediated recognition of NB cells with the potent cytotoxic activity of NK cells, here we generated clonal derivatives of the clinically applicable human NK cell line NK-92 that stably express a GD(2) -specific chimeric antigen receptor (CAR) comprising an anti-GD(2) ch14.18 single chain Fv antibody fusion protein with CD3-ζ chain as a signalling moiety. CAR expression by gene-modified NK cells facilitated effective recognition and elimination of established GD(2) expressing NB cells, which were resistant to parental NK-92. In the case of intrinsically NK-sensitive NB cell lines, we observed markedly increased cell killing activity of retargeted NK-92 cells. Enhanced cell killing was strictly dependent on specific recognition of the target antigen and could be blocked by GD(2) -specific antibody or anti-idiotypic antibody occupying the CAR's cell recognition domain. Importantly, strongly enhanced cytotoxicity of the GD(2) -specific NK cells was also found against primary NB cells and GD(2) expressing tumour cells of other origins, demonstrating the potential clinical utility of the retargeted effector cells.  相似文献   

3.
4.
The HER2 protooncogene encodes a receptor tyrosine kinase, p185HER2. The overexpression of p185HER2 has been associated with a worsened prognosis in certain human cancers. In the present work we have screened a variety of different tumor cell lines for p185HER2 expression using both enzyme-linked immunosorbent and fluorescence-activated cell sorting assays employing murine monoclonal antibodies directed against the extracellular domain of the receptor. Increased levels of p185HER2 were found in breast (5/9), ovarian (1/6), stomach (2/3) and colorectal (5/16) carcinomas, whereas all kidney and submaxillary adenocarcinoma cell lines tested were negative. Some monoclonal antibodies directed against the extracellular domain of p185HER2 inhibited growth in monolayer culture of breast and ovarian tumor cell lines overexpressing p185HER2, but had no effect on the growth of colon or gastric adenocarcinomas expressing increased levels of this receptor. The most potent growth-inhibitory anti-p185HER2 monoclonal antibody in monolayer culture, designated mumAb 4D5 (a murine IgG1 antibody), was also tested in soft-agar growth assays for activity against p185HER2-overexpressing tumor cell lines of each type, with similar results. In order to increase the spectrum of tumor types potentially susceptible to monoclonal antibody-mediated anti-p185HER2 therapies, to decrease potential immunogenicity issues with the use of murine monoclonal antibodies for human therapy, and to provide the potential for antibody-mediated cytotoxic activity, a mouse/human chimeric 4D5 (chmAb 4D5) and a humanized 4D5 (rhu)mAb 4D5 HER2 antibody were constructed. Both engineered antibodies, in combination with human peripheral blood mononuclear cells, elicited antibody-dependent cytotoxic responses in accordance with the level of p185HER2 expression. Since this cytotoxic activity is independent of sensitivity to mumAb 4D5, the engineered monoclonal antibodies expand the potential target population for antibody-mediated therapy of human cancers characterized by the overexpression of p185HER2.  相似文献   

5.
Engineering the antibody Fc region to enhance the cytotoxic activity of therapeutic antibodies is currently an active area of investigation. The contribution of complement to the mechanism of action of some antibodies that target cancers and pathogens makes a compelling case for its optimization. Here we describe the generation of a series of Fc variants with enhanced ability to recruit complement. Variants enhanced the cytotoxic potency of an anti-CD20 antibody up to 23-fold against tumor cells in CDC assays, and demonstrated a correlated increase in C1q binding affinity. Complementenhancing substitutions combined additively, and in one case synergistically, with substitutions previously engineered for improved binding to Fc gamma receptors. The engineered combinations provided a range of effector function activities, including simultaneously enhanced CDC, ADCC, and phagocytosis. Variants were also effective at boosting the effector function of antibodies targeting the antigens CD40 and CD19, in the former case enhancing CDC over 600-fold, and in the latter case imparting complement-mediated activity onto an IgG1 antibody that was otherwise incapable of it. This work expands the toolkit of modifications for generating monoclonal antibodies with improved therapeutic potential and enables the exploration of optimized synergy between Fc gamma receptors and complement pathways for the destruction of tumors and infectious pathogens.Key words: antibody, Fc, complement, CDC, C1q, ADCC, phagocytosis, CD20, CD19, CD40  相似文献   

6.
Immunotoxins are chimeric proteins consisting of an antibody linked to a toxin. The antibodies most frequently used for the preparation of immunotoxins are murine monoclonal antibodies belonging to IgG isotype. The most used toxins for the chemical construction of immunotoxins are Ricin toxin A chain in its deglycosylated form and recombinant Pseudomonas endotoxin with the cell-binding domain deleted. The linkage of the antibody to the toxin can be accomplished by chemical methods using reagents that crosslink antibody to toxin. The usual crosslinkers attach disulfide groups into the antibody molecule to form a disulfide bond between the antibody and the toxin. Disulfide bonds are susceptible to reduction in the cytoplasm of the targeted cells thereby releasing the toxin so that it can exert its cytotoxic activity only into the cells (e.g., tumor cells) binding the antibody moiety. This article describes various methods to obtain antibodies and toxins and several procedures for their crosslinking as well as “in vitro” and “in vivo” testing of the immunotoxins efficacy.  相似文献   

7.
Bispecific antibodies targeting cancer cells   总被引:4,自引:0,他引:4  
In recent years, antibody therapy has become a new treatment modality for tumour patients, although the majority of responses are only partial and not long lasting. Based on evidence that effector-cell-mediated mechanisms significantly contribute to antibody efficacy in vivo, several approaches are currently pursued to improve the interaction between Fc receptor-expressing effector cells and tumour target antigens. These approaches include application of Fc receptor-directed bispecific antibodies, which contain one specificity for a tumour-related antigen and another for a cytotoxic Fc receptor on immune effector cells. Thereby, bispecific antibodies selectively engage cytotoxic trigger molecules on killer cells, avoiding, for example, interaction with inhibitory Fc receptors. In vitro, chemically linked bispecific antibodies directed against the Fc gamma receptors Fc gamma RIII (CD16) and Fc gamma RI (CD64), and the Fc alpha receptor Fc alpha RI (CD89), were significantly more effective than conventional IgG antibodies. Recent animal studies confirmed the therapeutic potential of these constructs. However, results from clinical trials have been less promising so far and have revealed clear limitations of these molecules, such as short plasma half-lives compared with conventional antibodies. In this review, we briefly summarize the scientific background for bispecific antibodies, and describe the rationale for the generation of novel recombinant molecules. These constructs may allow us to more specifically tailor pharmacokinetic properties to the demands of clinical applications.  相似文献   

8.
Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets   总被引:29,自引:0,他引:29  
Inhibitory receptors have been proposed to modulate the in vivo cytotoxic response against tumor targets for both spontaneous and antibody-dependent pathways. Using a variety of syngenic and xenograft models, we demonstrate here that the inhibitory FcgammaRIIB molecule is a potent regulator of antibody-dependent cell-mediated cytotoxicity in vivo, modulating the activity of FcgammaRIII on effector cells. Although many mechanisms have been proposed to account for the anti-tumor activities of therapeutic antibodies, including extended half-life, blockade of signaling pathways, activation of apoptosis and effector-cell-mediated cytotoxicity, we show here that engagement of Fcgamma receptors on effector cells is a dominant component of the in vivo activity of antibodies against tumors. Mouse monoclonal antibodies, as well as the humanized, clinically effective therapeutic agents trastuzumab (Herceptin(R)) and rituximab (Rituxan(R)), engaged both activation (FcgammaRIII) and inhibitory (FcgammaRIIB) antibody receptors on myeloid cells, thus modulating their cytotoxic potential. Mice deficient in FcgammaRIIB showed much more antibody-dependent cell-mediated cytotoxicity; in contrast, mice deficient in activating Fc receptors as well as antibodies engineered to disrupt Fc binding to those receptors were unable to arrest tumor growth in vivo. These results demonstrate that Fc-receptor-dependent mechanisms contribute substantially to the action of cytotoxic antibodies against tumors and indicate that an optimal antibody against tumors would bind preferentially to activation Fc receptors and minimally to the inhibitory partner FcgammaRIIB.  相似文献   

9.
Antibody engineering for therapeutics   总被引:5,自引:0,他引:5  
With the acceptance of antibodies as therapeutics, a diversity of engineered antibody forms have been created to improve their efficacy, including enhancing the effector functions of full-length antibodies, delivering toxins to kill cells or cytokines in order to stimulate the immune system, and bispecific antibodies to target multiple receptors. After years of in vitro investigation, many of these are now moving into clinical trials and are showing promise. A potential new type of effector function for antibodies, that is, the generation of reactive oxygen species that may effect inflammation or bacterial killing, has been elucidated. In addition, the field has expanded beyond a concentration on immunoglobulin G to include immunoglobulin A antibodies as potential therapeutics.  相似文献   

10.
In this study, we demonstrate that tumor mRNA–loaded dendritic cells can elicit a specific CD8+ cytotoxic T-lymphocyte (CTL) response against autologous tumor cells in patients with malignant glioma. CTLs from three patients expressed strong cytolytic activity against autologous glioma cells, did not lyse autologous lymphoblasts or EBV-transformed cell lines, and were variably cytotoxic against the NK-sensitive cell line K-562. Also, DCs-pulsed normal brain mRNA failed to induce cytolytic activity against autologous glioma cells, suggesting the lack of autoimmune response. Two patients' CD8+ T cells expressed a modest cytotoxicity against autologous glioma cells. CD8+ T cells isolated during these ineffective primings secreted large amounts of IL-10 and smaller amounts of IFN- as detected by ELISA. Type 2 bias in the CD8+ T-cell response accounts for the lack of cytotoxic effector function from these patients. Cytotoxicity against autologous glioma cells could be significantly inhibited by anti-HLA class I antibody. These data demonstrate that tumor mRNA–loaded DC can be an effective tool in inducing glioma-specific CD8+ CTLs able to kill autologous glioma cells in vitro. However, high levels of tumor-specific tolerance in some patients may account for a significant barrier to therapeutic vaccination. These results may have important implications for the treatment of malignant glioma patients with immunotherapy. DCs transfected with total tumor RNA may represent a method for inducing immune responses against the entire repertoire of glioma antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号