首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 931 毫秒
1.
Expansion and hyper-methylation of a CGG repeat tract are the main causes of fragile X syndrome (FRAXA). In some rare instances, FRAXA patients harbor not only an expanded CGG tract, but a deletion encompassing the CGG repeat and flanking sequences as well. Through the use of an SV40 primate replication system, it was possible to determine that CpG methylation and DNA replication may actually mediate the formation of these rare events. Also, the genetically stabilizing AGG interruptions can be lost by replication-mediated CGG deletions.  相似文献   

2.
3.
The influences of double-strand breaks (DSBs) within a triplet repeat sequence on its genetic instabilities (expansions and deletions) related to hereditary neurological diseases was investigated. Plasmids containing 43 or 70 CTG.CAG repeats or 43 CGG.CCG repeats were linearized in vitro near the center of the repeats and were transformed into parental, RecA-dependent homologous recombination-deficient, or RecBC exonuclease-deficient Escherichia coli. The resulting repair process considerably increased deletion of the repeating sequence compared to the circular DNA controls. Unexpectedly, the orientation of the insert relative to the unidirectional ColE1 origin of replication affected the amount of instability generated during the repair of the DSB. When the CTG strand was the template for lagging-strand synthesis, instability was increased, most markedly in the recA- strain. Results indicated that RecA and/or RecBC might play a role in DSB repair within the triplet repeat. Altering the length, orientation, and sequence composition of the triplet repeat suggested an important role of DNA secondary structures during repair intermediates. Hence, we hypothesize that ColE1 origin-dependent replication was involved during the repair of the DSB. A model is presented to explain the mechanisms of the observed genetic instabilities.  相似文献   

4.
The mechanism of disease-associated (CTG)*(CAG) expansion may involve DNA replication slippage, replication direction, Okazaki fragment processing, recombination, or repair. A length-dependent bias for expansions is observed in humans affected by a trinucleotide repeat-associated disease. We developed an assay to test the effect of replication direction on (CTG)*(CAG) instabilities incurred during in vitro (SV40) DNA replication mediated by human cell extracts. This system recapitulates the bias for expansions observed in humans. Replication by HeLa cell extracts generated expansions and deletions that depended upon repeat tract length and the direction of replication. Templates with 79 repeats yielded predominantly expansions (CAG as lagging strand template) or predominantly deletions (CTG as lagging strand template). Templates containing 17 repeats were stable. Thus, replication direction determined the type of mutation. These results provide new insights into the orientation of replication effect upon repeat stability. This system will be useful in determining the contribution of specific human proteins to (CTG)*(CAG) expansions.  相似文献   

5.
6.
Fragile X syndrome, the most common form of inherited mental retardation in males, arises when the normally stable 5 to 50 CGG repeats in the 5' untranslated region of the fragile X mental retardation protein 1 (FMR1) gene expand to over 200, leading to DNA methylation and silencing of the FMR1 promoter. Although the events that trigger local CGG expansion remain unknown, the stability of trinucleotide repeat tracts is affected by their position relative to an origin of DNA replication in model systems. Origins of DNA replication in the FMR1 locus have not yet been described. Here, we report an origin of replication adjacent to the FMR1 promoter and CGG repeats that was identified by scanning a 35-kb region. Prereplication proteins Orc3p and Mcm4p bind to chromatin in the FMR1 initiation region in vivo. The position of the FMR1 origin relative to the CGG repeats is consistent with a role in repeat maintenance. The FMR1 origin is active in transformed cell lines, fibroblasts from healthy individuals, fibroblasts from patients with fragile X syndrome, and fetal cells as early as 8 weeks old. The potential role of the FMR1 origin in CGG tract instability is discussed.  相似文献   

7.
8.
Bzymek M  Lovett ST 《Genetics》2001,158(2):527-540
Spontaneous deletion mutations often occur at short direct repeats that flank inverted repeat sequences. Inverted repeats may initiate genetic rearrangements by formation of hairpin secondary structures that block DNA polymerases or are processed by structure-specific endonucleases. We have investigated the ability of inverted repeat sequences to stimulate deletion of flanking direct repeats in Escherichia coli. Propensity for cruciform extrusion in duplex DNA correlated with stimulation of flanking deletion, which was partially sbcD dependent. We propose two mechanisms for palindrome-stimulated deletion, SbcCD dependent and SbcCD independent. The SbcCD-dependent mechanism is initiated by SbcCD cleavage of cruciforms in duplex DNA followed by RecA-independent single-strand annealing at the flanking direct repeats, generating a deletion. Analysis of deletion endpoints is consistent with this model. We propose that the SbcCD-independent pathway involves replication slipped mispairing, evoked from stalling at hairpin structures formed on the single-stranded lagging-strand template. The skew of SbcCD-independent deletion endpoints with respect to the direction of replication supports this hypothesis. Surprisingly, even in the absence of palindromes, SbcD affected the location of deletion endpoints, suggesting that SbcCD-mediated strand processing may also accompany deletion unassociated with secondary structures.  相似文献   

9.
The human FMR1 gene contains a CGG repeat in its 5' untranslated region. The repeat length in the normal population is polymorphic (5-55 CGG repeats). Lengths beyond 200 CGGs (full mutation) result in the absence of the FMR1 gene product, FMRP, through abnormal methylation and gene silencing. This causes Fragile X syndrome, the most common inherited form of mental retardation. Elderly carriers of the premutation, defined as a repeat length between 55 and 200 CGGs, can develop a progressive neurodegenerative syndrome: Fragile X-associated tremor/ataxia syndrome (FXTAS). In FXTAS, FMR1 mRNA levels are elevated and it has been hypothesised that FXTAS is caused by a pathogenic RNA gain-of-function mechanism. We have developed a knock in mouse model carrying an expanded CGG repeat (98 repeats), which shows repeat instability and displays biochemical, phenotypic and neuropathological characteristics of FXTAS. Here, we report further repeat instability, up to 230 CGGs. An expansion bias was observed, with the largest expansion being 43 CGG units and the largest contraction 80 CGG repeats. In humans, this length would be considered a full mutation and would be expected to result in gene silencing. Mice carrying long repeats ( approximately 230 CGGs) display elevated mRNA levels and decreased FMRP levels, but absence of abnormal methylation, suggesting that modelling the Fragile X full mutation in mice requires additional repeats or other genetic manipulation.  相似文献   

10.
Gene-specific repeat instability is responsible for >36 human diseases. Active instability varies in a tissue-, developmental stage- and locus-specific manner and occurs in both proliferative and non-proliferative cells. In proliferative cells, DNA replication can contribute to repeat instability either by switching the direction of replication, which changes the repeat sequence that serves as the lagging-strand template (origin switching), or by shifting the location of the origin of replication without altering the replication direction (origin shifting). We propose that changes in the dynamics of replication-fork progression, or architecture, will alter the location of the repeat within the single-stranded lagging-strand template, thereby influencing instability (fork shifting). The fork-shift model, which does not require origin relocation, is influenced by cis-elements and trans-factors associated with driving and maintaining replication forks. The fork-shift model can explain some of the complex behaviours of repeat instability because it is dynamic and responsive to variations in epigenomic and locus activity.  相似文献   

11.
Peier AM  Nelson DL 《Genomics》2002,80(4):423-432
Fragile X syndrome results from the massive expansion of a CGG repeat in the 5' untranslated region of the gene FMR1. Data suggest that the hyperexpansion properties of FMR1 CGG repeats may depend on flanking cis-acting elements. We have therefore used homologous recombination in yeast to introduce an in situ CGG expansion corresponding to a premutation-sized allele into a human YAC carrying the FMR1 locus. Several transgenic lines were generated that carried repeats of varying lengths and amounts of flanking sequence. Length-dependent instability in the form of small expansions and contractions was observed in both male and female transmissions over five generations. No parent-of-origin effect or somatic instability was observed. Alterations in tract length were found to occur exclusively in the 3' uninterrupted CGG tract. Large expansion events indicative of a transition from a premutation to a full mutation were not observed. Overall, our results indicate both similarities and differences between the behavior of a premutation-sized repeat in mouse and that in human.  相似文献   

12.
Friedreich's ataxia (GAA)n repeats of various lengths were cloned into a Saccharymyces cerevisiae plasmid, and their effects on DNA replication were analyzed using two-dimensional electrophoresis of replication intermediates. We found that premutation- and disease-size repeats stalled the replication fork progression in vivo, while normal-size repeats did not affect replication. Remarkably, the observed threshold repeat length for replication stalling in yeast (approximately 40 repeats) closely matched the threshold length for repeat expansion in humans. Further, replication stalling was strikingly orientation dependent, being pronounced only when the repeat's homopurine strand served as the lagging strand template. Finally, it appeared that length polymorphism of the (GAA)n. (TTC)n repeat in both expansions and contractions drastically increases in the repeat's orientation that is responsible for the replication stalling. These data represent the first direct proof of the effects of (GAA)n repeats on DNA replication in vivo. We believe that repeat-caused replication attenuation in vivo is due to triplex formation. The apparent link between the replication stalling and length polymorphism of the repeat points to a new model for the repeat expansion.  相似文献   

13.
In this study, we have characterized a CGG repeat at the FMR-1 locus in more than 100 families (more than 500 individuals) presenting for fragile X testing and in 247 individuals from the general population. Both Southern blot and PCR-based assays were evaluated for their ability to detect premutations, full mutations, and variability in normal allele sizes. Among the Southern blot assays, the probes Ox1.9 or StB12.3 with a double restriction-enzyme digest were the most sensitive in detecting both small and large amplifications and, in addition, provided information on methylation of an adjacent CpG island. In the PCR-based assays, analysis of PCR products on denaturing DNA sequencing gels allowed the most accurate determination of CGG repeat number up to approximately 130 repeats. A combination of a Southern blot assay with a double digest and the PCR-sequencing-gel assay detected the spectrum of amplification-type mutations at the FMR-1 locus. In the patient population, a CGG repeat of 51 was the largest to be stably inherited, and a repeat of 57 was the smallest size of premutation to be unstably inherited. When premutations were transmitted by females, the size of repeat correlated with risk of expansion to a full mutation in the next generation. Full mutations (large repeats typically associated with an abnormal methylation pattern and mitotic instability) were associated with clinical and cytogenetic manifestations in males but not necessarily in females. In the control population, the CGG repeat ranged from 13 to 61, but 94% of alleles had fewer than 40 repeats. The most frequent allele (34%) was a repeat of 30. One female had an allele (61 repeats) within a range consistent with fragile X premutations, while two other individuals each had a repeat of 52. This suggests that the frequency of unstable alleles in the general population may be approximately 1%.  相似文献   

14.
Null mutations in DNA mismatch repair (MMR) genes elevate both base substitutions and insertions/deletions in simple sequence repeats. Data suggest that during replication of simple repeat sequences, polymerase slippage can generate single-strand loops on either the primer or template strand that are subsequently processed by the MMR machinery to prevent insertions and deletions, respectively. In the budding yeast Saccharomyces cerevisiae and mammalian cells, MMR appears to be more efficient at repairing mispairs comprised of loops on the template strand compared to loops on the primer strand. We identified two novel yeast pms1 alleles, pms1-G882E and pms1-H888R, which confer a strong defect in the repair of "primer strand" loops, while maintaining efficient repair of "template strand" loops. Furthermore, these alleles appear to affect equally the repair of 1-nucleotide primer strand loops during both leading- and lagging-strand replication. Interestingly, both pms1 mutants are proficient in the repair of 1-nucleotide loop mispairs in heteroduplex DNA generated during meiotic recombination. Our results suggest that the inherent inefficiency of primer strand loop repair is not simply a mismatch recognition problem but also involves Pms1 and other proteins that are presumed to function downstream of mismatch recognition, such as Mlh1. In addition, the findings reinforce the current view that during mutation avoidance, MMR is associated with the replication apparatus.  相似文献   

15.
16.
K. Weston-Hafer  D. E. Berg 《Genetics》1991,127(4):649-655
We test here whether a class of deletions likely to result from errors during DNA replication arise preferentially during synthesis of either the leading or the lagging DNA strand. Deletions were obtained by reversion of particular insertion mutant alleles of the pBR322 amp gene. The alleles contain insertions of palindromic DNAs bracketed by 9-bp direct repeats of amp sequence; in addition, bp 2 to 5 in one arm of the palindrome form a direct repeat with 4 bp of adjoining amp sequence. Prior work had shown that reversion to Ampr results from deletions with endpoints in the 8- or 4-bp repeat, and that the 4-bp repeats are used preferentially because one of them is in the palindrome. To test the role of leading and lagging strand synthesis in deletion formation, we reversed the direction of replication of the amp gene by inverting the pBR322 replication origin, and also constructed new mutant alleles with a 4-bp repeat starting counterclockwise rather than clockwise of the insertion. In both cases the 4-bp repeats were used preferentially as deletion endpoints. A model is presented in which deletions arise during elongation of the strand that copies the palindrome before the adjoining 4-bp repeat, and in which preferential use of the 4-bp repeats independent of the overall direction of replication implies that deletions arise during syntheses of both leading and lagging strands.  相似文献   

17.
The fragile X phenotype has been found, in the majority of cases, to be due to the expansion of a CGG repeat in the 5'-UTR region of the FMR-1 gene, accompanied by methylation of the adjacent CpG island and inactivation of the FMR-1 gene. Although several important aspects of the genetics of fragile X have been resolved, it remains to be elucidated at which stage in development the transition from the premutation to the full mutation occurs. We present two families in which discordance between two sets of MZ twins illustrates two important genetic points. In one family, two affected MZ brothers differed in the number of CGG repeats, demonstrating in vivo mitotic instability of this CGG repeat and suggesting that the transition to the full mutation occurred postzygotically. In the second family, two MZ sisters had the same number of repeats, but only one was mentally retarded. When the methylation status of the FMR-1 CpG island was studied, we found that the majority of normal chromosomes had been inactivated in the affected twin, thus leading to the expression of the fragile X phenotype.  相似文献   

18.
19.
20.
Expansion of trinucleotide repeats (TNRs) is the causative mutation in several human genetic diseases. Expanded TNR tracts are both unstable (changing in length) and fragile (displaying an increased propensity to break). We have investigated the relationship between fidelity of lagging-strand replication and both stability and fragility of TNRs. We devised a new yeast artificial chromomosme (YAC)-based assay for chromosome breakage to analyze fragility of CAG/CTG tracts in mutants deficient for proteins involved in lagging-strand replication: Fen1/Rad27, an endo/exonuclease involved in Okazaki fragment maturation, the nuclease/helicase Dna2, RNase HI, DNA ligase, polymerase delta, and primase. We found that deletion of RAD27 caused a large increase in breakage of short and long CAG/CTG tracts, and defects in DNA ligase and primase increased breakage of long tracts. We also found a correlation between mutations that increase CAG/CTG tract breakage and those that increase repeat expansion. These results suggest that processes that generate strand breaks, such as faulty Okazaki fragment processing or DNA repair, are an important source of TNR expansions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号