首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The relationship between the P-glycoprotein-mediated vinblastine secretion and cell-swelling activated Cl- secretion (conductance) in intact epithelial layers of human colonic adenocarcinoma T84 cells has been investigated. Whereas vinblastine secretion is effectively inhibited by 100 microM 1,9-dideoxy-forskolin, volume-stimulated Cl- secretion is unaffected. In contrast, 100 microM 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS) inhibited the volume-stimulated Cl- secretion, but was without effect upon transepithelial vinblastine secretion. In addition, it was noted that some epithelial layers failed to express a volume-stimulated Cl- secretion but maintained a normal level of secretory vinblastine flux.  相似文献   

2.
Vasoactive intestinal peptide (VIP) stimulates active Cl- secretion by the intestinal epithelium, a process that depends upon the maintenance of a favorable electrical driving force established by a basolateral membrane K+ conductance. To demonstrate the role of this K- conductance, we measured short-circuit current (I(SC)) across monolayers of the human colonic secretory cell line, T84. The serosal application of VIP (50 nM) increased I(SC) from 3 +/- 0.4 microA/cm2 to 75 +/- 11 microA/cm2 (n = 4), which was reduced to a near zero value by serosal applications of Ba2+ (5 mM). The chromanol, 293B (100 microM), reduced I(SC) by 74%, but charybdotoxin (CTX, 50 nM) had no effect. We used the whole-cell voltage-clamp technique to determine whether the K+ conductance is regulated by cAMP-dependent phosphorylation in isolated cells. VIP (300 nM) activated K+ current (131 +/- 26 pA, n = 15) when membrane potential was held at the Cl- equilibrium potential (E(Cl-) = -2 mV), and activated inward current (179 +/- 28 pA, n = 15) when membrane potential was held at the K+ equilibrium potential (E(K+) = -80 mV); however, when the cAMP-dependent kinase (PKA) inhibitor, PKI (100 nM), was added to patch pipettes, VIP failed to stimulate these currents. Barium (Ba2+ , 5 mM), but not 293B, blocked this K+ conductance in single cells. We used the cell-attached membrane patch under conditions that favor K + current flow to demonstrate the channels that underlie this K+ conductance. VIP activated inwardly rectifying channel currents in this configuration. Additionally, we used fura-2AM to show that VIP does not alter the intracellular Ca2+ concentration, [Ca2 +]i. Caffeine (5 mM), a phosphodiesterase inhibitor, also stimulated K+ current (185 +/- 56 pA, n = 8) without altering [Ca2+]i. These results demonstrate that VIP activates a basolateral membrane K+ conductance in T84 cells that is regulated by cAMP-dependent phosphorylation.  相似文献   

3.
Neurotransmitter-controlled Cl- secretions play an important role in maintenance of the epididymal microenvironment for sperm maturation. This study was carried out to investigate the effect of carbachol (CCH) on the cultured rat epididymal epithelium and the signal transduction mechanisms of this response. In normal K-H solution, CCH added basolaterally elicited a biphasic Isc response consisting of a transient spike followed by a second sustained response. Ca2+ activated Cl- channel blocker disulfonic acid stilbene (DIDS, 300 microM) only inhibited part of the CCH-induced Isc response, while nonselective Cl- channel blocker diphenylamine-dicarboxylic acid (DPC, 1 mM) reduced all, indicating the involvement of different conductance pathways. Both peaks of the CCH-induced Isc response could be significantly inhibited by pretreatment with an adenylate cyclase inhibitor, MDL12330A (50 microM). An increase in intracellular cAMP content upon stimulation of CCH was measured. All of the initial peak and part of the second peak could be inhibited by pretreatment with Ca2+-chelating agent BAPTA/AM (50 microM) and an endoplasmic reticulum Ca2+ pump inhibitor, Thapsigagin (Tg, 1 microM). In a whole-cell patch clamp experiment, CCH induced an inward current in the single cell. Two different profiles of currents were found; the first component current exhibited an outward rectifying I-V relationship in a time and voltage-dependent manner, and the current followed showed a linear I-V relationship. The carbachol-induced current was found to be partially blockable by DIDS and could be completely blocked by DPC. The above results indicate that the CCH-induced Cl- secretion could be mediated by Ca2+ and cAMP-dependent regulatory pathways.  相似文献   

4.
Sperm entry in the egg of the painted frog, Discoglossus pictus, occurs only at a specialized region of the animal hemisphere called the animal dimple, a structure not found in other species of frog. An extracellular vibrating electrode was used to measure the activation current to determine if the ion channels that open to generate the fertilization potential are localized in this region. Eggs that were activated by microinjecting inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) exhibited activation potentials very similar to those of fertilized eggs. There was a delay between the time of Ins(1,4,5)P3 injection and the initiation of the activation potential that was proportional to the distance between the site of the activating stimulus and the animal dimple, similar to the delay previously observed in prick-activated eggs (R. Talevi, B. Dale, and C. Campanella (1985). Dev. Biol. 111, 316-323). The delay lasted 30 sec when the stimulus site was 20 degrees (300 micron) from the animal dimple and 14 min when it was 150 degrees C from the dimple. Once the activation potential was initiated, there was an excellent temporal correlation between the time of depolarization and the time of the first detectable current entering the dimple region. This inward current was typically 60 microA/cm2 in amplitude and was found only in the central 200 micron of the dimple region. The outward current was distributed over the remainder of the egg surface and was much smaller in amplitude. The activation current was carried by Cl- efflux in the animal dimple region, and was reduced by DIDS and reversed by high external Cl- or I-. The occurrence of inward current only at the dimple region indicates that Cl- channels which open to produce the activation potential are localized there. Using Ca2+-specific microelectrodes, we found that [Ca2+]i increased from 0.25 to 2 microM following both fertilization and activation and returned to the unactivated level after about 37 min. Immature oocytes of D. pictus were also studied with the vibrating probe and the inward current in these cells was much less localized than that in the activating egg. A steady transcellular current of up to 4 microA/cm2 entered the entire animal hemisphere of the oocyte and exited the vegetal hemisphere.  相似文献   

5.
We recently described a large, multiple-conductance Cl- channel in excised patches from normal T lymphocytes. The properties of this channel in excised patches are similar to maxi-Cl- channels found in a number of cell types. The voltage dependence in excised patches permitted opening only at nonphysiological voltages, and channel activity was rarely seen in cell-attached patches. In the present study, we show that Cl- channels can be activated in intact cells at physiological temperatures and voltages and that channel properties change after patch excision. Maxi-Cl- channels were reversibly activated in 69% of cell-attached patches when the temperature was above 32 degrees C, whereas fewer than 2% of patches showed activity at room temperature. Upon excision, the same patches displayed large, multiple-conductance Cl- channels with characteristics like those we previously reported for excised patches. After patch excision, warm temperatures were not essential to allow channel activity; 37% (114/308) of inside-out patches had active channels at room temperature. The voltage dependence of the channels was markedly different in cell-attached recordings compared with excised patches. In cell-attached patches, Cl- channels could be open at cell resting potentials in the normal range. Channel activation was not related to changes in intracellular Ca2+ since neither ionomycin nor mitogens activated the channels in cell-attached patches, Ca2+ did not rise in response to warming and the Cl- channel was independent of Ca2+ in inside-out patches. Single-channel currents were blocked by internal or external Zn2+ (100-200 microM), 4-acetamido-4' isothiocyanostilbene-2,2'-disulfonate (SITS, 100-500 microM) and 4,4'-diisothiocyanostilbene 2,2'-disulfonate (DIDS, 100 microM). NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) reversibly blocked the channels in inside-out patches.  相似文献   

6.
The immortalized rat submandibular epithelial cell line, SMG-C6, cultured on porous tissue culture supports, forms polarized, tight-junction epithelia facilitating bioelectric characterization in Ussing chambers. The SMG-C6 epithelia generated transepithelial resistances of 956+/-84Omega.cm2 and potential differences (PD) of -16.9 +/- 1.5mV (apical surface negative) with a basal short-circuit current (Isc) of 23.9 +/- 1.7 microA/cm2 (n = 69). P2 nucleotide receptor agonists, ATP or UTP, applied apically or basolaterally induced a transient increase in Isc, followed by a sustained decreased below baseline value. The peak DeltaIsc increase was partly sensitive to Cl- and K+ channel inhibitors, DPC, glibenclamide, and tetraethylammonium (TEA) and was completely abolished following Ca2+ chelation with BAPTA or bilateral substitution of gluconate for Cl-. The major component of basal Isc was sensitive to apical Na+ replacement or amiloride (half-maximal inhibitory concentration 392 nM). Following pretreatment with amiloride, ATP induced a significantly greater Isc; however, the poststimulatory decline was abolished, suggesting an ATP-induced inhibition of amiloride-sensitive Na+ transport. Consistent with the ion transport properties found in Ussing chambers, SMG-C6 cells express the rat epithelial Na+ channel alpha-subunit (alpha-rENaC). Thus, cultured SMG-C6 cells produce tight polarized epithelia on permeable support with stimulated Cl- secretory conductance and an inward Isc accounted for by amiloride-sensitive Na+ absorption.  相似文献   

7.
Angiotensin II receptors in Xenopus oocytes.   总被引:2,自引:0,他引:2  
Electrical recordings were used to study the sensitivity of native Xenopus oocytes to the octapeptide angiotensin II (AII). AII elicited oscillatory currents associated with an increase in membrane conductance to Cl-. Responsiveness to AII varied greatly between oocytes taken from different frogs, and to a lesser extent between oocytes from the same ovary. Oocytes from frogs showing high sensitivity had response thresholds between 0.5-1.0 nM AII, and at a holding potential of -60 mV, responded to 1 microM AII with currents greater than 3 microA. In contrast, oocytes from some frogs gave no response, even to 10 microM AII. A total of 618 oocytes from 79 frogs were tested for sensitivity to AII, and oocytes from 85% of frogs gave detectable electrical responses. Oscillatory Cl- currents elicited by AII were largely independent of extracellular Ca2+, were abolished by chelation of intracellular Ca2+ using EGTA and were mimicked by intraoocyte injection of inositol 1,4,5-trisphosphate (IP3). In addition to oscillatory Cl- currents, AII also evoked an influx of extracellular Ca2+, giving rise to a transient inward Cl- current on membrane hyperpolarizing steps. These experiments all suggested that AII responses were elicited through activation of an intracellular messenger pathway triggered by hydrolysis of inositolphospholipids, mobilization of intracellular Ca2+ by inositol polyphosphates, and activation of Ca(2+)-gated Cl- channels. The effect of manual or enzymic defolliculation on AII responses was studied in nine separate experiments recording from 70 defolliculated oocytes. Efficacy of defolliculation procedures was assayed using scanning electron microscopy, which confirmed removal of 90 to greater than 98% of follicular cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
1. Serotonin, 100 microM, induces a peak increase in short circuit current of about 150 microA/cm2 and in cord conductance of about 7 mS/cm2 and a more prolonged increase of 30 microA/cm2 and 1.4 mS/cm2 which lasts more than 30 min in hen colon. 2. The peak increase in short circuit current and cord conductance is due to a concomitant Cl- secretion. 3. The second messenger, which mediates Cl- secretion, increases in short circuit current and cord conductance, is cyclic AMP as theophylline, 0.5 mM, increases the response in short circuit current to 1 microM serotonin from 38 +/- 5 to 78 +/- 8 microA/cm2 and in g from 1.1 +/- 0.4 to 2.0 +/- 0.3 mS/cm2. 4. Theophylline, 0.5 mM, also sensitizes the hen colon to cyclic AMP yielding an EC50 of 0.24 +/- 0.03 mM in the presence of theophylline compared with an EC50 of 2.3 +/- 0.2 mM in the absence of theophylline. 5. Manipulations of other putative second messenger systems, such as the prostaglandins/leucotrienes, the phosphoinositides and external Ca2+ or calmodulin-sensitive enzymes, did not influence the serotonin response in short circuit current and cord conductance, thus ruling out their importance as intracellular mediators.  相似文献   

9.
Xiao GN  Guan YY  He H 《Life sciences》2002,70(19):2233-2241
The effects of Cl- channel blockers on endothelin-1 (ET-1)-induced proliferation of rat aortic vascular smooth muscle cells (VSMC) were examined. We found ET-1 concentration-dependently increased cell count and [3H]-thymidine incorporation into VSMC, with EC50 values of 24.8 and 11.4 nM, respectively. Both nifedipine and SK&F96365 inhibited 10 nM ET-1-induced [3H]-thymidine incorporation into VSMC with the maximal inhibitory concentrations of 1 and 10 microM, respectively. DIDS inhibited 10 nM ET-1-induced increase in cell count and [3H]-thymidine incorporation into VSMC in a concentration-dependent manner, whereas other Cl- channel blockers including IAA-94, NPPB, DPC, SITS and furosemide did not produce these effects. 3 microM DIDS reduced 10 nM ET-1-induced sustained increase in cytoplasmic Ca2+ concentration ([Ca2+]) by 52%. Pretreatment of VSMC with 1 microM nifedipine completely inhibited the DIDS effect on 10 nM ET-1-induced [3H]-thymidine incorporation into VSMC and sustained increase in [Ca2+]i, whereas pretreatment with 10 microM SK&F96365 did not completely block these effects of DIDS. DIDS did not affect ET-1-induced Ca2+ release and 30 mM KCl-induced increase in [Ca2+]i. Our data suggest that DIDS-sensitive Cl- channels mediate VSMC proliferation induced by ET-1 by mechanisms related to membrane depolarization and Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

10.
Membrane currents in isolated swine tracheal smooth muscle cells were investigated using a pipette solution containing BAPTA-Ca2+ buffer and Cs+ as the major cation. With a pipette solution containing 100 nM free Ca2+, acetylcholine (ACh; 1-100 microM), in a concentration-dependent manner, activated a current without inducing shortening of cells, although neither 1 mM histamine nor 1 microM leukotriene D4 activated the current (n = 7, n is the number of cells). The effect of 100 microM ACh was suppressed by pretreatment with 100 microM atropine (n = 6) or intracellular application of preactivated pertussis toxin at a concentration of 0.1 microg x mL(-1) (n = 8). Genistein (0.1-100 microM), in a concentration-dependent manner, suppressed the activation of the inward current by 100 microM ACh, whereas it did not significantly suppress that of the outward current (n = 6-8). With a pipette solution containing 50 nM free Ca2+, outward current, but not inward current, was activated by 100 microM ACh (n = 10). When the pipette solution had free Ca2+ concentrations greater than 50 nM, the inward current together with the outward current was activated. The ratio between the amplitude of the inward and outward currents was significantly increased as the free Ca2+ concentration in the pipette solution increased. The steady-state activation curve of the ACh-activated current with the 50 nM free Ca2+ pipette solution was fitted by a single Boltzmann distribution (Vh = +69.8 mV, k = -11.9 mV, n = 10). The activation time constant became smaller as the membrane potential was more depolarized (164.3+/-5.9 ms at +40 mV to 92.4+/-6.3 ms at +120 mV, n = 10). The reversal potential was not significantly changed by reducing extracellular Cl- concentration to one-tenth of the control (n = 8), suggesting that the current is a nonselective cationic current. These results suggest that ACh activates an outward nonselective cationic current via pertussis toxin-sensitive G-protein(s) coupled with muscarinic receptors. Involvement of genistein-sensitive tyrosine kinase in the activation process of the current is unlikely.  相似文献   

11.
Hepatocellular Cl- flux is integral to maintaining cell volume and electroneutrality in the face of the many transport and metabolic activities that describe the multifaceted functions of these cells. Although a significant volume-regulated Cl- current (VRAC) has been well described in hepatocytes, the Cl- channels underlying the large resting anion conductance have not been identified. We used a combination of electrophysiological and molecular approaches to describe potential candidates for this conductance. Anion currents in rat hepatocytes and WIF-B and HEK293T cells were measured under patch electrode-voltage clamp. With K+-free salts of Cl- comprising the major ions externally and internally, hyperpolarizing steps between -40 and -140 mV activated a time-dependent inward current in hepatocytes. Steady-state activation was half-maximal at -63 mV and 28-38% of maximum at -30 to -45 mV, previously reported hepatocellular resting potentials. Gating was dependent on cytosolic Cl-, shifting close to 58 mV/10-fold change in Cl- concentration. Time-dependent inward Cl- currents and a ClC-2-specific RT-PCR product were also observed in WIF-B cells but not HEK293T cells. All cell types exhibited typical VRAC in response to dialysis with hypertonic solutions. DIDS (0.1 mM) inhibited the hepatocellular VRAC but not the inward time-dependent current. Antibodies against the COOH terminus of ClC-2 reacted with a protein between 90 and 100 kDa in liver plasma membranes. The results demonstrate that rat hepatocytes express a time-dependent inward Cl- channel that could provide a significant depolarizing influence in the hepatocyte.  相似文献   

12.
This study examines purinergic modulation of short-circuit current (I(SC)) in monolayers of C7- and C11-MDCK cells resembling principal and intercalated cells from collecting ducts. In C7 monolayers, basolateral and apical application of ATP led to similar elevation of I(SC), consisting of a transient phase with maximal I(SC) increment of approximately 10 microA/cm2 terminating in 2-3 min, and a sustained phase with maximal I(SC) less than 2 microA/cm2 and terminating in 10 min. ATP-induced I(SC) was insensitive to the presence of Na+, Cl- and inhibitors of K+ (Ba2+, charibdotoxin (ChTX), clotrimazole (CLT), apamin) and Na + (amiloride) channels in the mucosal solution. Inhibitors of Cl- channels, DIDS and NPPB, added to apical membranes at a concentration of 100 microM, did not affect ATP-induced I(SC), whereas at 500 microM, NPPB inhibited it by 70-80%. Substitution of Cl- with NO3- in serosal medium decreased ATP-induced I(SC) by 2-3-fold and elevation of [K+]o from 6 to 60 mM changed its direction. Basolateral NPPB inhibited I(SC) by 10-fold with ED50 of approximately 30 microM, whereas ChTX (50 nM) and CLT (2 microM) diminished this parameter by 30-50%. Suppression of Na+, K+, Cl- cotransport with bumetanide did not affect the transient phase of ATP-induced I(SC) and slightly diminished its sustained phase. ATP increased ouabainand bumetanide-resistant K+ (86Rb) influx across the basolateral membrane by 7-8-fold, which was partially inhibited with ChTX and CLT. ATP-treated C11 cells exhibited negligible I(SC), and their presence did not affect I(SC) triggered by ATP in C7 cells. Thus, our results show that transcellular ion current in ATP-treated C7 cells is mainly caused by the coupled function of apical and basolateral anion transporters providing transient Cl- secretion. These transporters possess different sensitivities to anion channel blocker NPBB and are under the control of basolateral K+ channels(s) inhibited by ChTX and CLT.  相似文献   

13.
Exposure of the giant marine alga Valonia utricularis to acute hypo-osmotic shocks induces a transient increase in turgor pressure and subsequent back-regulation. Separate recording of the electrical properties of tonoplast and plasmalemma together with turgor pressure was performed by using a vacuolar perfusion assembly. Hypo-osmotic turgor pressure regulation was inhibited by external addition of 300 microM of the membrane-permeable ion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). In the presence of 100 microM NPPB, regulation could only be inhibited by simultaneous external addition of 200 microM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a membrane-impermeable inhibitor of Cl(-) transport. At concentrations of about 100 microM, NPPB seems to selectively inhibit Cl(-) transporters in the tonoplast and K(+) transporters in the plasmalemma, whereas 300 microM NPPB inhibits K(+) and Cl(-) transporters in both membranes. Evidence was achieved by measuring the tonoplast and plasmalemma conductances (G(t) and G(p)) in low-Cl(-) and K(+)-free artificial seawater. Inhibition of turgor pressure regulation by 300 microM NPPB was accompanied by about 85% reduction of G(t) and G(p). Vacuolar addition of sulfate, an inhibitor of tonoplast Cl(-) transporters, together with external addition of DIDS and Ba(2+) (an inhibitor of K(+) transporters) also strongly reduced G(p) and G(t) but did not affect hypo-osmotic turgor pressure regulation. These and many other findings suggest that KCl efflux partly occurs via electrically silent transport systems. Candidates are vacuolar entities that are disconnected from the huge and many-folded central vacuole or that become disconnected upon disproportionate swelling of originally interconnected vacuolar entities upon acute hypo-osmotic challenge.  相似文献   

14.
Volume-sensitive outwardly rectifying (VSOR) Cl- channels have been electrophysiologically identified in human and mouse mesangial cells, but the functional role of VSOR Cl- channels in mesangial cell apoptosis is not clear. The aim of the present study was to demonstrate the role of VSOR Cl- channels in oxidative stress-induced mesangial cell apoptosis. H2O2-induced Cl- currents showed phenotypic properties of VSOR Cl- channels, including outward rectification, voltage-dependent inactivation at more positive potentials, sensitivity to hyperosmolarity, and inhibition by VSOR Cl- channel blockers. Moreover, blockage of VSOR Cl- channels by DIDS (100 microM), NPPB (10 microM) or niflumic acid (10 microM) rescued mesangial cell apoptosis induced by H2O2. Treatment with 150 microM H2O2 for 2h resulted in significant reduction of cell volume, in contrast, nuclear condensation and/or fragmentation were not observed and the caspase-3 activity was also not increased. The early-phase alterations in cell volume were markedly abolished by pretreatment with VSOR Cl- channel blockers. We conclude that VSOR Cl- channels are involved in H2O2-induced apoptosis in cultured mesangial cells and its mechanism is associated with apoptotic volume decrease processes.  相似文献   

15.
HeLa cells had their normal medium replaced by an isosmotic medium containing 80 mM K+, 70 mM Na+ and 100 microM ouabain. The cellular contents of K+ first increased and then decreased to the original values, that is, the cells showed a regulatory decrease (RVD) in size. The initial increase was not inhibited by various agents except by substitution of medium Cl- with gluconate. In contrast, the regulatory decrease was inhibited strongly by addition of either 1 mM quinine, 10 microM BAPTA-AM without medium Ca2+, or 0.5 mM DIDS, and partly by either 1 mM EGTA without medium Ca2+, 10 microM trifluoperazine, or substitution of medium Cl- with NO3-. Addition of DIDS to the NO3(-)-substituted medium further suppressed the K+ loss but the effect was incomplete. Intracellular Ca2+ showed a transient increase after the medium replacement. These results suggest that the initial increase in cell K+ is a phenomenon related to osmotic water movement toward Donnan equilibrium, whereas the regulatory K+ decrease is caused by K+ efflux through Ca(2+)-dependent K+ channels. The K+ decrease induced a decrease in cellular water, i.e., RVD. The K+ efflux may be more selectively associated with Cl- efflux through DIDS-sensitive channels than the efflux of other anions.  相似文献   

16.
Primary cultures of rat cortical astrocytes undergo a swelling-activated loss of taurine and creatine. In this study, the pharmacological characteristics of the taurine and creatine efflux pathways were compared, and significant differences were shown to exist between the two. Both taurine and creatine effluxes were rapidly activated upon exposure of astrocytes to hypo-osmotic media, and rapidly inactivated upon their return to iso-osmotic media. The relative rates of taurine and creatine efflux depended upon the magnitude of the hypo-osmotic shock. Anion-transport inhibitors strongly inhibited taurine efflux, with the order of potency being NPPB > DIDS > niflumic acid. DIDS and NPPB had less of an inhibitory effect on creatine efflux, whereas tamoxifen and niflumic acid actually stimulated creatine efflux. These data are consistent with separate pathways for taurine and creatine loss during astrocyte swelling.  相似文献   

17.
The role of plasma membrane Cl(-)-HCO-3-exchange in regulating intracellular pH (pHi) was examined in Madin-Darby canine kidney cell monolayers. In cells bathed in 25 mM HCO-3, pH 7.4, steady state pHi was 7.10 +/- 0.03 (n = 14) measured with the fluorescent pH probe 2',7'-biscarboxyethyl-5,6-carboxyfluorescein. Following acute alkaline loading, pHi recovered exponentially in approximately 4 min. The recovery rate was significantly decreased by Cl- or HCO-3 removal and in the presence of 50 microM 4,4'-diisothiocyano-2,2'-disulfonic stilbene (DIDS). Na+ removal or 10(-3) M amiloride did not inhibit the pHi recovery rate after an acute alkaline load. Following acute intracellular acidification, the pHi recovery rate was significantly inhibited by 10(-3) M amiloride but was not altered by Cl- removal or 50 microM DIDS. At an extracellular pH (pHo) of 7.4, pHi remained unchanged when the cells were bathed in either Cl- free media, HCO-3 free media, or in the presence of 50 microM DIDS. As pHo was increased to 8.0, steady state pHi was significantly greater than control in Cl(-)-free media and in the presence of 50 microM DIDS. It is concluded that Madin-Darby canine kidney cells possess a Na+-independent Cl(-)-HCO-3 exchanger with a Km for external Cl- of approximately 6 mM. The exchanger plays an important role in pHi regulation following an elevation of pHi above approximately 7.1. Recovery of pHi following intracellular acidification is mediated by the Na+/H+ antiporter and not the anion exchanger.  相似文献   

18.
Anion dependence of (Ca2+ + K+)-stimulated Mg2+-dependent transport ATPase and its phosphorylated intermediate have been characterized in both "intact" and "broken" vesicles from endoplasmic reticulum of rat pancreatic acinar cells using adenosine 5'-[gamma-32P] triphosphate ([gamma-32P]ATP). In intact vesicles (Ca2+ + K+)-Mg2+-ATPase activity was higher in the presence of Cl- or Br- as compared to NO3-, SCN-, cyclamate-, SO4(2-) or SO3(2-). Incorporation of 32P from [gamma-32P]ATP into the 100-kDa intermediate of this Ca2+ATPase was also higher in the presence of Cl-, Br-, NO3- or SCN- as compared to cyclamate-, SO4(2-) or SO3(2-). When the membrane permeability barrier to anions was abolished by breaking vesicle membrane with the detergent Triton X-100 (0.015%) (Ca2+ + K+)-Mg2+ATPase activity in the presence of weakly permeant anions, such as SO4(2-) and cyclamate-, increased to the level obtained with Cl-. However, 32P incorporation into 100-kDa protein was still higher in the presence of Cl- as compared to cyclamate-, indicating a direct effect of Cl- on the Ca2+ATPase molecule. The anion transport blocker 4,4-diisothiocyanostilbene-2,2-disulfonate (DIDS) inhibited (Ca2+ + K+)-Mg2+ATPase activity to about 10% of the Cl- stimulation level, irrespective of the sort of anions present in both intact and broken vesicles. This indicates a direct effect of DIDS on (Ca2+ + K+)-Mg2+ATPase. K+ ionophore valinomycin influenced (Ca2+ + K+)-Mg2+ATPase activity according to the actual K+ gradient: Ko+ greater than Ki+ caused inhibition, Ko+ less than Ki+ caused stimulation. From these results we conclude that Ca2+ transport into endoplasmic reticulum is coupled to ion movements which must occur to maintain electroneutrality.  相似文献   

19.
NPPB (5-nitro-2-(3-phenylpropylamino)benzoic acid) has been reported to block Cl- channels in isolated rabbit nephrons with high potency (IC50 = 80 nM). The effects of this compound on Cl(-)-mediated transport processes in intestinal tissues have been studied using agonist-stimulated short-circuit current (T84) in Ussing chamber experiments and 36Cl- fluxes in monolayers of a colonic cell line (T84). NPPB inhibited PGE1-stimulated Isc in rabbit distal colon and ileum at concentrations in the range 20 to 100 microM. However, NPPB at the same concentrations also inhibited glucose-stimulated Isc in rabbit ileum, suggesting that its effects were not restricted to those on Cl- transport. Consistent with this, exposure of rabbit distal colon to 100 microM NPPB was found to reduce endogenous ATP levels by 69%, implying that, at these concentrations, NPPB could impair active transport processes by an effect on cellular energy metabolism. Clear evidence for a direct effect of NPPB on epithelial chloride channels was found in studies on Cl- fluxes in T84 cell monolayers. NPPB inhibited VIP-stimulated Cl- uptake into T84 cells with an IC50 of 414 microM. NPPB (1 mM) also inhibited Cl- efflux from pre-loaded cells confirming its effect as a weak Cl- channel blocker in this system.  相似文献   

20.
We isolated and cultured fetal distal lung epithelial (FDLE) cells from 17- to 19-day rat fetuses and assayed for anion secretion in Ussing chambers. With symmetrical Ringer solutions, basal short-circuit currents (I(sc)) and transepithelial resistances were 7.9 +/- 0.5 microA/cm(2) and 1,018 +/- 73 Omega.cm(2), respectively (means +/- SE; n = 12). Apical amiloride (10 microM) inhibited basal I(sc) by approximately 50%. Subsequent addition of forskolin (10 microM) increased I(sc) from 3.9 +/- 0.63 microA/cm(2) to 7.51 +/- 0.2 microA/cm(2) (n = 12). Basolateral bumetanide (100 microM) decreased forskolin-stimulated I(sc) from 7.51 +/- 0.2 microA/cm(2) to 5.62 +/- 0.53, whereas basolateral 4,4'-dinitrostilbene-2,2'-disulfonate (5 mM), an inhibitor of HCO secretion, blocked the remaining I(sc). Forskolin addition evoked currents of similar fractional magnitudes in symmetrical Cl(-)- or HCO(-)(3)-free solutions; however, no response was seen using HCO(-)(3)- and Cl(-)-free solutions. The forskolin-stimulated I(sc) was inhibited by glibenclamide but not apical DIDS. Glibenclamide also blocked forskolin-induced I(sc) across monolayers having nystatin-permeablized basolateral membranes. Immunolocalization studies were consistent with the expression of cystic fibrosis transmembrane conductance regulator (CFTR) protein in FDLE cells. In aggregate, these findings indicate the presence of cAMP-activated Cl(-) and HCO(-)(3) secretion across rat FDLE cells mediated via CFTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号