首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stable isotope ratios of sulfur (34S/32S), carbon (13C/12C), and nitrogen (15N/14N) were analyzed in the soft tissues of 12 common species of fish from the near-shore waters of the Peter the Great Bay in the Sea of Japan. The average δ13C values of individual species varied from −20.7‰ for planktivorous fish to −16.8‰ for benthivorous fish, reflecting the growing relative contribution of benthic primary producers to fish nutrition. The majority of the various species representatives studied can be assigned to one trophic level, as indicated by their narrow range of δ15N values (9.9 to 12.6‰). Large interspecific variations were found in the sulfur stable isotope ratios of fish (the mean δ34S values ranged from 11.2 to 19.5‰). This is the result of the different contributions to fish nutrition of infaunal invertebrates that are depleted in 34S due to the microbial food chain of the bottom sediments.  相似文献   

2.
The food webs of rocky infra-littoral ecosystems in the Mediterranean have been little studied. In this investigation stable isotopes and dietary data were compared in an attempt to describe features of the food webs concerned. δ13C and δ15N were determined for plants, invertebrates and fishes from the Bay of Calvi, Corsica. Dietary data were derived from the literature. δ13C of plants ranged from –8.59‰ to –33.74‰, of benthic invertebrates from –17.0‰ to –20.52‰, of planktonic invertebrates from –20.08‰ to –22.34‰ and of fishes from –16.27‰ to –19.59‰. δ15N was generally greater at higher trophic levels. δ15N of plants was 0.95–2.92‰, of benthic invertebrates 1.69–6.54‰, of planktonic invertebrates 3.51–6.82‰ and of fishes 4.63–9.77‰. 13C enrichment tended to be associated with benthic food chains and 13C depletion with planktonic chains. Stable-isotope data suggested more varied diets for many species than implied by gut-contents data. Omnivory and trophic plasticity were widespread, and many consumers fed lower down the food chain than previous studies had suggested. Both stable-isotope and gut-contents analysis resolved differences between fishes feeding on planktonic and benthic prey and indicated that the herbivorous fish Sarpa salpa fed on a diet substantially different from that of other fishes. Zooplankton were important in the diets of several consumers (both primary and secondary), as was plankton derived detritus. One species of fish previously identified as planktivorous was shown to feed largely on benthic organisms, whilst several species of benthic invertebrates may feed on plankton-derived detritus. Although herbivores seemed to obtain most of their C from macroalgae, δ15N data suggested that many of these animals supplemented their intake of N, although gut-contents analysis did not provide evidence for such uptake. The isotopic data have elucidated several features of the food web which we would not otherwise have detected. Received: 26 April 1999 / Accepted: 24 September 1999  相似文献   

3.
Lake Taihu is a large, shallow, and eutrophic lake in China. It has provided local communities with valuable fisheries for centuries, but little is known of the trophodynamics, or of its faunal communities. Carbon and nitrogen isotopic composition was used to assess its trophic pathways and the food web structure [food sources and trophic levels (TL)]. Basal food sources were distinguishable based on their δ13C values, ranging from −27.2 to −15.2‰. Consumers were also well separated in δ13C (−26.9 to −17.9‰ for invertebrates and −25.7 to −18.1‰ for fishes), which allowed for an effective discrimination of carbon sources between these fauna. An average trophic enrichment factor of 3.4‰ was used to calculate the TLs based on δ15N of zooplankton, with results indicating a food web having four TLs. Although δ15N values overlap and cover a large range within trophic compartments, the isotopic signatures of the species assessed revealed a general trend of 15N enrichment with increasing TL. Stable isotope signatures were also used to establish a general food web scheme in which five main trophic pathways were analyzed.  相似文献   

4.
The damselfishes, with more than 340 species, constitute one of the most important families that live in the coral reef environment. Most of our knowledge of reef-fish ecology is based on this family, but their trophic ecology is poorly understood. The aim of the present study was to determine the trophic niches of 13 sympatric species of damselfishes by combining stable isotope (δ15N and δ13C) and stomach content analyses. Isotopic signatures reveal three main groups according to their foraging strategies: pelagic feeders (Abudefduf sexfasciatus, A. sparoides, A. vaigiensis, Chromis ternatensis, C. dimidiata, Dascyllus trimaculatus and Pomacentrus caeruleus), benthic feeders (Chrysiptera unimaculata, Plectroglyphidodon lacrymatus and Amphiprion akallopisos) and an intermediate group (D. aruanus, P. baenschi and P. trilineatus). Stomach contents reveal that planktonic copepods and filamentous algae mainly represent the diets of pelagic feeders and benthic feeders, respectively. The intermediate position of the third group resulted from a partitioning of small planktonic prey, small vagile invertebrates and filamentous algae. In this last feeding group, the presence of a wide range of δ13C values in P. trilineatus suggests a larger trophic niche width, related to diet-switching over time. Some general considerations about the feeding habits of damselfishes reveal that their choice of habitat on the reef and their behavior appear to be good predictors of diet in this group. Benthic (algae and/or small invertebrates) feeders appear to be solitary and defend a small territory on the bottom; zooplankton feeders remain in groups just above the reef, in the water column.  相似文献   

5.
Lake Ellesmere (Te Waihora) is a nationally important coastal brackish lake in New Zealand, however degradation in water quality and loss of submerged macrophytes over past decades have raised concerns in regards to the declining status of the lake’s commercial and customary fisheries, predominantly targeted at shortfin eels (Anguilla australis). We investigated foodweb dynamics and trophic linkages to shortfin eels in Lake Ellesmere using a combination of abundance assessments, dietary studies, and stable isotope analyses. Data from our study are compared with historical data sets on benthic invertebrate community composition and shortfin eel diets to trace changes in the trophic linkages to top predators that have occurred since the late 1960s. Stable isotope analyses indicate that the foodweb is predominantly driven by epipelic and phytoplankton derived carbon sources, although it was difficult to discriminate between these two carbon pools because of wind-driven resuspension of lake sediments. Comparison of our survey results with historical data sets indicates a clear shift in benthic biota from being dominated by phytofaunal species such as Potamopyrgus antipodarum (comprising 90% of total invertebrate biomass) during the 1960s, to now being almost entirely comprised of subterranean species such as Chironomus zealandicus and oligochaetes (together comprising 82% of total invertebrate biomass). This shift in benthic communities has resulted in significant changes in the size-specific diet of juvenile shortfin eels (<400 mm) from those reported for Lake Ellesmere during the mid 1970s, with Chironomus larvae now comprising 65% of the diets of juvenile eels, whereas historically P. antipodarum was the dominant food item (>30% of total biomass). This shift towards foraging on smaller sediment-dwelling species could have implications for juvenile eel bioenergetics, and may help explain why juvenile shortfin growth rates have significantly decreased in past decades. Juvenile shortfins now appear to switch to foraging on preyfish (mainly common bullies, Gobiomorphus cotidianus) at a smaller size (≈400 mm) than historically recorded (>500 mm). Dietary and stable isotope signatures indicated that small shortfins (100–299 mm) have considerable overlap in trophic position (δ13C = −20.4‰, δ15N = 13.6‰) with common bullies (δ13C = −20.5‰, δ15N = 13.7‰), the dominant fish in Lake Ellesmere (92% of total abundance CPUE), potentially indicating that these two species may directly compete for food resources. These findings again highlighted the importance of C. zealandicus in sustaining the fish populations of the lake. Handling editor: S. Declerck  相似文献   

6.
The frequency of individuals with empty stomachs (FES) can vary greatly among northern pike populations. However, the FES has only seldom been analyzed in this species and its meaning is still not fully understood. It has been suggested that a high FES may reflect a strongly piscivorous behaviour while low FES could reflect a higher utilization of invertebrates. We compared the stomach contents and the trophic position of northern pike in 16 populations of individuals feeding mainly on fish or benthic invertebrates. We tested the hypothesis that northern pike with empty stomachs or with fish in their stomachs have a higher trophic position than individuals feeding on invertebrates. Carbon (δ13C) and nitrogen (δ15N) stable isotope signatures were used to estimate the trophic position of individuals. We found no significant difference in the trophic position among piscivores, invertebrate feeders, and northern pike with empty stomachs. The average trophic position of northern pike was high (mean ± SD = 4.3 ± 0.4, n = 66) and was correlated with total length. These results indicate that, although invertebrates could be an important part of the diet of northern pike in Canadian Shield lakes, fish are still the dominant prey. Hence, feeding on invertebrates in our study lakes would reflect an opportunistic rather than a specialized feeding strategy.  相似文献   

7.
Salt marshes and shallow-water macroalgal beds are known to provide nursery habitat for many species of fish and invertebrates. The role of these habitats as refuge from predation is well established, but the degree to which indigenous primary production within the nursery provides food for growth and development of estuarine species remains unresolved. In this study, we tested the hypothesis that juvenile blue crabs depend on indigenous primary production, directly or indirectly, during their entire stay within the nursery. To test this hypothesis, we conducted isotopic studies and stomach content analyses of juveniles from habitats near the mouth of Delaware Bay and from an adjacent lagoonal estuary (ca. 39.5° N, 75.1° W). Primary producers, marsh detritus, various life-history stages of blue crabs and potential prey species were sampled in the main estuary and in an adjacent marsh during the summer and early fall of two consecutive years. Newly settled juveniles (<15 mm carapace width) from the marsh were about 1.8‰ lighter in carbon (−17.2‰) relative to larger juveniles from the marsh (15–30 mm carapace width) and appeared to have retained a carbon isotopic signature indicative of the phytoplankton-based food web associated with larval stages. However, the signature of juveniles changed as a function of size. Large juveniles and crabs >60 mm were enriched in δ13C (−14.7 ± 0.1‰) compared to small crabs, suggesting a gradual shift in diet from a planktonic to a detritus-based food web with increasing size. As with crabs from Delaware Bay, the δ13C signature of juvenile crabs sampled from macroalgal beds in the lagoonal estuary (Rehoboth Bay) changed as a function of size. Also, δ13C ratios of crabs varied among the various species of macroalgae. The δ15N composition of primary producers in the marsh and main estuary also was reflected in the δ15N values of crabs and other benthic consumers in the respective habitats. Results of stomach-content analysis in this study were consistent with isotope data. Observed changes in prey preferences were related to changes in size of juvenile crabs and also differed among habitats. Gut content analyses of the three size classes of juveniles in macroalgal beds from Rehoboth Bay indicated that the crabs depend heavily on various amphipod species that occur on the seaweeds. These amphipods graze directly on the macroalgae and are among the most abundant invertebrates in the macroalgal beds. This implies a direct trophic relationship between the juvenile crabs and the macroalgae. In summary, our study provides strong evidence that the value of nursery areas such as salt marshes and macroalgal beds goes beyond that of providing refuge from predation, and that species using these nurseries (e.g. juvenile blue crabs) are ultimately dependent on primary production originating in benthic plants indigenous to the nursery.  相似文献   

8.
Trophic patterns of omnivorous freshwater shrimps, Exopalaemon modestus and Macrobrachium nipponensis, were investigated in two shallow eutrophic lakes by using stable isotope analysis. δ15N and δ13C of M. nipponensis and E. modestus increased with increasing body weight, which might be attributed to larger individuals ingesting organisms that feed higher up the food chain and/or increased assimilation of benthic food items with enriched isotopic signatures. Of the freshwater shrimps occurring in the studied lakes, those from Lake Taihu had significantly elevated δ15N and δ13C values (4.3‰ and 1.8‰, respectively) compared with those from the less eutrophic Lake Chaohu, indicating that the isotopic signature might partially reflect the trophic states of their habitats. Mixing model results suggested that the benthic food web provides the primary carbon source for both shrimp species, and that E. modestus assimilated relatively more pelagic food sources than M. nipponensis in these lakes. Handling editor: S. Wellekens  相似文献   

9.
A feeding trial was performed in the laboratory with the catfish species Pterygoplichthys disjunctivus to determine stable carbon (13C) and nitrogen (15 N) turnover rates and discrimination factors in non-lethally sampled tissues (red blood cells, plasma solutes, and fin). A second feeding trial was conducted to determine what P. disjunctivus could assimilate from low-quality wood-detritusrefractory polysaccharides (e.g., cellulose), or soluble wood-degradation products inherent in wood-detritus. This was performed by feeding the fish an artificial wood-detritus diet with fibrous (δ13C = −26.36‰; δ15N = 2.13‰) and soluble portions (δ13C = −11.82‰; δ15N = 3.39‰) that had different isotopic signatures and monitoring the dynamics of isotopic incorporation in the different tissues over time. Plasma solutes turned over more quickly than red blood cells for 13C and 15 N. However, in contrast to previous studies of juvenile fishes, C and N incorporation was primarily driven by catabolic tissue turnover as opposed to growth rate. Tissue-diet discrimination factors for 15 N varied from 4.08 to 5.17‰, whereas they were <2‰ for 13C (and less than 0.3‰ for plasma and red blood cells). The results of trial two suggested that P. disjunctivus could not assimilate refractory polysaccharides. Moreover, the δ13C and δ15 N signatures of wild-caught P. disjunctivus from Florida confirmed their detrital trophic standing in Floridian aquatic ecosystems.  相似文献   

10.
The cardinal tetra (Paracheirodon axelrodi) is the most abundant species of the Brazilian ornamental fish trade, constituting more than 80% of the ornamental fish collected in the middle Negro River basin. Stable isotope analyses were used to identify the autotrophic carbon sources and trophic position for the cardinal in relation to the plant groups at the base of its foodchain. Filamentous algae, tree and plant leaves and cardinals were collected in stream habitats, flooded forest and interfluvial swamps (campos) during peak flood, falling water and low water periods. δ15N values of the cardinal in relation to the plants at the base of the food chain indicated a trophic position of omnivore. Values of δ13C for the plants ranged from −43.1 to −26.4‰, with averages of −37.6, −30.4, and −29.4‰ for filamentous algae, flooded forest leaves, and campo leaves, respectively. The δ13C values for the cardinal ranged from −35.0 to −27.9‰, with an average of −31.4‰. Relative contributions of plants to fish carbon were estimated in a two end-member mixing model which determined that the leaves (flooded forest and campo leaves combined) and filamentous algae had average relative contributions to cardinal carbon of 71% and 29%, respectively. However, seasonal variation in the relative contributions was encountered throughout the hydrological cycle. The cardinals least enriched in 13C were encountered in November during the falling water period, indicating that they had perhaps recently migrated down from interfluvial campos where filamentous algae production is significant. Considering that algal production has been reported to be less than 1% of total primary production in the Negro River, these results could suggest some evidence of selective herbivory in the cardinal’s food chain. Handling editor: J. M. Melack  相似文献   

11.
Carbon and nitrogen stable isotopes are frequently used to study energy sources and food web structure in ecosystems, and more recently, to study the effects of anthropogenic stress on aquatic ecosystems. We investigated the effect of nutrient enrichment on δ13C and δ15N in fine (FPOM), coarse (CPOM) particulate organic matter, periphyton, invertebrates and fish in nine boreal streams in south-central Sweden. In addition, we analysed the diet of benthic consumers using stable isotope data. Increases in δ15N of periphyton (R 2 = 0.88), CPOM (0.78), invertebrates (0.92) and fish (0.89) were related to nutrient enrichment. In contrast, δ13C signatures did not change along the nutrient gradient. Our results show that δ15N has potential as a sensitive indicator of nutrient enrichment in boreal streams. Carbon and nitrogen isotopes failed to elucidate putative diets of selected aquatic consumers. Indeed, comparison of low- and high-impact sites showed that δ13C of many consumers were found outside the ranges of basal resource δ13C. Moreover, ranges of basal resource δ13C and δ15N overlapped at both low and high sites, making discrimination between the importance of allochthonous and autochthonous production difficult. Our findings show that a fractionation rate of 3.4‰ is not always be appropriate to assess trophic interactions, suggesting that more studies are needed on fractionation rates along gradients of impairment. Handling editor: M. Power  相似文献   

12.
《Acta Oecologica》2002,23(4):277-285
The δ13C and δ15N values of primary producers and consumers were studied to obtain information on the trophic role of Posidonia oceanica L. Delile, the dominant primary producer, in a Mediterranean shallow environment (the Stagnone di Marsala, western Sicily). δ13C strongly discriminated between pelagic and benthic pathways, with the former based on phytoplankton and the latter on a mixed pool of seagrass detritus, epiphytes and benthic algae as carbon sources. A particularly important trophic role appears to be performed by the vegetal epiphytic community on seagrass leaves (δ13C = –14.9 ± 0.1‰), which supports most of the faunal seagrass community (i.e. Amphipoda, Isopoda, Tanaidacea; δ13C = –14.9 ± 0.1‰, –12.5 ± 0.1‰ and –14.8 ± 1.0‰, respectively). Although Poceanica13C = –11.3 ± 0.3‰) does not seem to be utilised by consumers via grazing (apart from a few Palaemonidae species with δ13C value of –10.8 ± 1.8‰), its trophic role may be via detritus. Poceanica detritus may be exploited as a carbon source by small detritivore invertebrates, and above all seems to be exploited as a nitrogen reservoir by both bottom and water column consumers determining benthic–pelagic coupling. At least three trophic levels were detected in both the pelagic (mixture of phytoplankton and cyanobacteria, zooplankton, juvenile transient fish) and benthic (sedimentary organic matter and epiphytes, small seagrass-associated invertebrates, larger invertebrates and adult resident fish) pathways.  相似文献   

13.
Abstract Freshwater ecosystems derive organic carbon from both allochthonous and autochthonous sources. We studied the relative contributions of different carbon sources to zooplankton in a small, polyhumic, steeply stratified lake, using six replicate surface-to-sediment enclosures established during summer and autumn 2004. We added 13C-enriched bicarbonate to the epilimnion of half the enclosures for three weeks during each season and monitored carbon stable isotope ratios of DIC, DOC, POC and Daphnia, along with physical, chemical and biological variables. During summer, 13C-enriched DIC (δ13C up to 44 ± 7.2‰) was soon taken up by phytoplankton (δ13C up to −5.1 ± 13.6‰) and was transmitted to Daphnia13C up to −1.7 ± 7.2‰), demonstrating consumption of phytoplankton. In contrast, during autumn, 13C-enriched DIC (δ13C up to 56.3 ± 9.8‰) was not transmitted to Daphnia, whose δ13C became progressively lower (δ13C down to −45.6 ± 3.3‰) concomitant with decreasing methane concentration. Outputs from a model suggested phytoplankton contributed 64–84% of Daphnia diet during summer, whereas a calculated pelagic carbon mass balance indicated only 30–40% could have come from phytoplankton. Although autumn primary production was negligible, zooplankton biomass persisted at the summer level. The model suggested methanotrophic bacteria contributed 64–87% of Daphnia diet during autumn, although the calculated carbon mass balance indicated a contribution of 37–112%. Thus methanotrophic bacteria could supply virtually all the carbon requirement of Daphnia during autumn in this lake. The strongly 13C-depleted Daphnia values, together with the outputs from the models and the calculated carbon mass balance showed that methanotrophic bacteria can be a greater carbon source for Daphnia in lakes than previously suspected.  相似文献   

14.
Logan J  Haas H  Deegan L  Gaines E 《Oecologia》2006,147(3):391-395
Nitrogen stable isotopes are frequently used in ecological studies to estimate trophic position and determine movement patterns. Knowledge of tissue-specific turnover and nitrogen discrimination for the study organisms is important for accurate interpretation of isotopic data. We measured δ15 N turnover in liver and muscle tissue in juvenile mummichogs, Fundulus heteroclitus, following a laboratory diet switch. Liver tissue turned over significantly faster than muscle tissue suggesting the potential for a multiple tissue stable isotope approach to study movement and trophic position over different time scales; metabolism contributed significantly to isotopic turnover for both liver and muscle. Nitrogen diet-tissue discrimination was estimated at between 0.0 and 1.2‰ for liver and –1.0 and 0.2‰ for muscle. This is the first experiment to demonstrate a significant variation in δ15 N turnover between liver and muscle tissues in a fish species.  相似文献   

15.
Trophic polymorphism was recently reported in introduced bluegill (Lepomis macrochirus) in Lake Biwa, Japan, where three morphs are specialized in benthic invertebrates (benthivorous type), submerged aquatic plants (herbivorous type), and zooplankton (planktivorous type). We evaluated the long-term effects of food resource utilization by these trophic morphs using stable isotope ratios, δ15N and δ13C. A significant difference in δ15N was found between the benthivorous and planktivorous types. The planktivorous type had the higher δ15N value, which corresponded with the value expected from its prey, zooplankton. The lower δ15N value of the benthivorous type would be derived from the lower δ15N values of benthic prey organisms compared to zooplankton. These results support previous findings that the benthivorous and planktivorous types have different food resource utilization. In contrast, the δ15N and δ13C values of the herbivorous type were distinctly different from the expected values, indicating that this type was unlikely to utilize aquatic plants substantially, contradicting the results of the dietary analysis.  相似文献   

16.
Trophic interactions and community structure in the upwelling system off Central Chile (USCCh) (33-39°S) are analyzed using biological and ecological data concerning the main trophic groups and the Ecopath with Ecosim software version 5.0 (EwE). The model encompasses the fisheries, cetaceans, sea lion, marine birds, cephalopods, large-sized pelagic fish (sword fish), medium-sized pelagic fish (horse mackerel, hoki), small-sized pelagic fish (anchovy, common sardine), demersal fish (e.g. Chilean hake, black conger-eel), benthic invertebrates (red squat lobster, yellow squat lobster) and other groups such as zooplankton, phytoplankton and detritus. Input data was gathered from published and unpublished reports and our own estimates. Trophic interactions, system indicators and food web attributes are calculated using network analysis routines included in EwE. Results indicate that trophic groups are aligned around four trophic levels (TL) with phytoplankton and detritus at the TL=1, while large-sized pelagic fish and cetaceans are top predators (TL>4.0). The fishery is located at an intermediate to low trophic level (TL=2.97), removing about 15% of the calculated system primary production. The pelagic realm dominates the system, with medium-sized pelagic fish as the main fish component in biomass, while small-sized pelagic fish dominate total landings. Chilean hake is by far the main demersal fish component in both, biomass and yield. Predators consume the greater part of the production of the most important fishery resources, particularly juvenile stages of Chilean hake. Consequently, mortality by predation is an important component of total mortality. However, fishery also removes a large fraction of common sardine, anchovy, horse mackerel, and Chilean hake. The analysis of direct and indirect trophic impacts reveals that Chilean hake is a highly cannibalistic species. Chilean hake is also an important predator on anchovy, common sardine, benthic invertebrates, and demersal fish. The fisheries heavily impact on Chilean hake, common sardine, anchovy, and horse mackerel. Total system biomass (B=476 t km−2 year−1) and throughput (T=89454 t km−2 year−1) estimated in the USCCh model are in accordance with models of comparable systems. Considering system attributes derived from network analysis, the USCCh can be characterized as an immature system, with short trophic chains and low trophic transfer efficiency. Finally, we suggest that trophic interactions should be considered in stock assessment and management programs in USCCh. In addition, future research programs should be carried out in order to understand the ecosystem effects of fishing and trophic control in this highly productive food web.  相似文献   

17.
Spence KO  Rosenheim JA 《Oecologia》2005,146(1):89-97
Researchers will be able to use stable isotope analysis to study community structure in an efficient way, without a need for extensive calibrations, if isotopic enrichment values are consistent, or if variation in enrichment values can be predicted. In this study, we generated an experimental data set of δ15N and δ13C enrichment means for 22 terrestrial herbivorous arthropods feeding on 18 different host plants. Mean enrichments observed across a single trophic transfer (plants to herbivores) were −0.53±0.26‰ for δ13C (range: −3.47‰ to 1.89‰) and 1.88±0.37‰ for δ15N (range: −0.20‰ to 6.59‰). The mean δ13C enrichment was significantly lower than that reported in recent literature surveys, whereas the mean δ15N enrichment was not significantly different. The experimental data set provided no support for recent hypotheses advanced to explain variation in enrichment values, including the proposed roles for consumer feeding mode, development type, and diet C:N ratio. A larger data set, formed by combining our experimental data with data from the literature, did suggest possible roles for feeding mode, nitrogen recycling, herbivore life stage, and host plant type. Our results indicate that species enrichment values are variable even in this relatively narrow defined group of organisms and that our ability to predict enrichment values of terrestrial herbivorous arthropods based on physiological, ecological, or taxonomic traits is low. The primary implications are that (1) mean enrichment may have to be measured empirically for each trophic link of interest, rather than relying on estimates from a broad survey of animal taxa and (2) the advantage of using stable isotope analysis to probe animal communities that are recalcitrant to other modes of study will be somewhat diminished as a consequence.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

18.
We provide preliminary carbon (δ13C) and nitrogen (δ15N) stable isotope assessment of the Greenland halibut (Reinhardtius hippoglossoides) diet in Cumberland Sound, with focus on two possible prey sources: pelagic represented by capelin (Mallotus villosus) and epibenthic represented by shrimp (Lebbeus polaris). The δ13C for the Greenland halibut stock indicated a pelagic carbon source in Cumberland Sound while stable isotope mixing models, IsoSource and MixSIR, indicated a 99% dietary composition of capelin relative to the shrimp. The δ15N did not vary across Greenland halibut size ranges and placed them at a fourth trophic position relative to a primary herbivore. This study provides the starting point for more elaborate Cumberland Sound research on the local Greenland halibut feeding ecology by confirming pelagic feeding and establishing relative trophic position as well as identifying stable isotopes as a useful tool for the study of diet in cold water fish species.  相似文献   

19.
The food-web structure of the Arctic deep Canada Basin was investigated in summer 2002 using carbon and nitrogen stable isotope tracers. Overall food-web length of the range of organisms sampled occupied four trophic levels, based on 3.8 trophic level enrichment (15N range: 5.3–17.7). It was, thus, 0.5–1 trophic levels longer than food webs in both Arctic shelf and temperate deep-sea systems. The food sources, pelagic particulate organic matter (POM) (13C=–25.8, 15N=5.3) and ice POM (13C=–26.9, 15N=4.1), were not significantly different. Organisms of all habitats, ice-associated, pelagic and benthic, covered a large range of 15N values. In general, ice-associated crustaceans (15N range 4.6–12.4, mean 6.9) and pelagic species (15N range 5.9–16.5, mean 11.5) were depleted relative to benthic invertebrates (15N range 4.6–17.7, mean 13.2). The predominantly herbivorous and predatory sympagic and pelagic species constitute a shorter food chain that is based on fresh material produced in the water column. Many benthic invertebrates were deposit feeders, relying on largely refractory material. However, sufficient fresh phytodetritus appeared to arrive at the seafloor to support some benthic suspension and surface deposit feeders on a low trophic level (e.g., crinoids, cumaceans). The enriched signatures of benthic deposit feeders and predators may be a consequence of low primary production in the high Arctic and the subsequent high degree of reworking of organic material.  相似文献   

20.
The genus Ramaria is composed of several subgenera that often correspond to specific trophic strategies. Because carbon and nitrogen isotopes can be used to assess fungal trophic status and nitrogen sources, we accordingly carried out an extensive survey of isotopic patterns in archived specimens of Ramaria from Germany and other locations. Isotopic patterns in species generally corresponded to subgeneric affiliations and to the range of different potential substrates, with fungi fruiting on wood and litter (subgenera Asteroramaria and Lentoramaria) much lower in δ15N (≈−3‰) than ectomycorrhizal taxa (≈12‰) (subgenus Ramaria) or taxa fruiting on soil (≈13‰) (subgenus Echinoramaria). Conversely, fungi fruiting on wood and litter were higher in δ13C (−23‰) than those fruiting on soil (≈−27‰), with ectomycorrhizal fungi intermediate (≈−24.5‰). Fungi colonizing mineral soil horizons were about 3‰ enriched in 15N relative to those colonizing both mineral and organic horizons. The high δ15N and low δ13C signatures of taxa fruiting on soil remains unexplained. The high degree of fidelity of isotopic signatures with subgeneric classifications and life history traits suggests that sporocarps are good integrators of patterns of carbon and nitrogen cycling for specific taxa. Archived specimens represent a useful trove of life history information that could be mined without requiring extensive supporting isotopic data from other ecosystem pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号