首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
T47D cells, cultured in medium containing serum stripped of endogenous steroids, proliferate in response to treatment with the progesterone receptor (PR) agonist, R5020 or the PR agonist/antagonist, RU486, whereas the full PR antagonist, ZK98299 has no proliferative effects. Under estrogenized conditions, all of the PR ligands tested inhibit cell growth [23]. In order to determine whether the levels or phosphorylation state of PR are reflected in the growth patterns of T47D cells, we monitored the effects of these PR ligands on the immunoblotted PR band intensities, the relative intensities, of PR-A and PR-B, and their phosphorylation states that are reflected in their altered mobility during SDS-PAGE. Under conditions where the PR ligands inhibit cell proliferation, each ligand had distinctively different qualitative and quantitative effects on PR. Short term treatment of the cells with R5020 or RU486 induced a characteristic phosphorylation-dependent upshift of both PR-A and PR-B. The phosphorylated PR was stable for up to 4 days after treatment of the cells with RU486, but was down regulated between 6-24 h after treatment with R5020. No replenishment of PR in cells treated with R5020 was detected. ZK98299, at concentrations tested, had no qualitative or quantitative effects on PR. Culturing cells for 8 days in medium containing steroid-depleted serum caused a significant reduction in the PR band intensity without causing a change in the ratio of PR-A and PR-B or their phosphorylation states. This decrease in the PR band intensity was reversed by maintaining the cells in 1 nM estrogen, but was potentiated by RU486 or ZK98299. These observations support the view that decreased PR levels may play a role in the stimulatory effects of R5020 and RU486 when cells are cultured under non-estrogenized conditions.  相似文献   

3.
We previously reported, using a coimmunoprecipitation assay, that the B form (PR-B) of the human progesterone receptor from T47D human breast cancer cells dimerizes in solution with the A receptor (PR-A) and that the extent of dimerization correlates with receptor binding activity for specific DNA sequences [DeMarzo, A.M., Beck, C.A., O?ate, S.A., & Edwards, D.P. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 72-76]. This suggested that solution dimerization is an intermediate step in the receptor activation process. The present study has tested the effects of the progesterone antagonist RU486 on solution dimerization of progesterone receptors (PR). As determined by the coimmunoprecipitation assay, RU486 binding did not impair dimerization of receptors; rather, the antagonist promoted more efficient solution dimerization than the progestin agonist R5020. This enhanced receptor dimerization correlated with a higher DNA binding activity for transformed receptors bound with RU486. RU486 has been shown previously to produce two other alterations in the human PR when compared with R5020. PR-RU486 complexes in solution exhibit a faster sedimentation rate (6 S) on salt-containing sucrose density gradients than PR-R5020 complexes (4 S), and PR-DNA complexes have a faster electrophoretic mobility on gel-shift assays in the presence of RU486. We presently show that the 6 S PR-RU486 complex is a receptor monomer, not a dimer. The increased sedimentation rate and increased mobility on gel-shift assays promoted by RU486 were also observed with recombinant PR-A and PR-B separately expressed in insect cells from baculovirus vectors. These results suggest that RU486 induces a distinct conformational change both in PR monomers in solution and in dimers bound to DNA. We also examined whether conformational changes in PR induced by RU486 would prevent a PR polypeptide bound to RU486 from heterodimerization with another PR polypeptide bound to R5020. To evaluate this, PR-A and PR-B that were separately bound to R5020 or RU486 in whole cells were mixed in vitro. PR-A-RU486 was capable of dimerization with PR-B-R5020, and this was demonstrated for heterodimers both formed in solution and bound to specific DNA. The capability to form heterodimers in vitro raises the possibility that the antagonist action of RU486 in vivo could in part be imposed in a dominant negative fashion through heterodimerization between one receptor subunit bound to an agonist and another bound to RU486.  相似文献   

4.
5.
Spontaneous labor in women and in other mammals is likely mediated by a concerted series of biochemical events that negatively impact the ability of the progesterone receptor (PR) to regulate target genes that maintain myometrial quiescence. In the present study, we tested the hypothesis that progesterone/PR inhibits uterine contractility by blocking nuclear factor kappaB (NF-kappaB) activation and induction of cyclooxygenase-2 (COX-2), a contractile gene that is up-regulated in labor. To uncover mechanisms for regulation of uterine COX-2, immortalized human fundal myometrial cells were treated with IL-1beta +/- progesterone. IL-1beta alone caused a marked up-regulation of COX-2 mRNA, whereas treatment with progesterone suppressed this induction. This was also observed in human breast cancer (T47D) cells. In both cell lines, this inhibitory effect of progesterone was blocked by RU486. Using chromatin immunoprecipitation, we observed that IL-1beta stimulated recruitment of NF-kappaB p65 to both proximal and distal NF-kappaB elements of the COX-2 promoter; these effects were diminished by coincubation with progesterone. The ability of progesterone to inhibit COX-2 expression in myometrial cells was associated with rapid induction of mRNA and protein levels of inhibitor of kappaBalpha, a protein that blocks NF-kappaB transactivation. Furthermore, small interfering RNA-mediated ablation of both PR-A and PR-B isoforms in T47D cells greatly enhanced NF-kappaB activation and COX-2 expression. These effects were observed in the absence of exogenous progesterone, suggesting a ligand-independent action of PR. Based on these findings, we propose that PR may inhibit NF-kappaB activation of COX-2 gene expression and uterine contractility via ligand-dependent and ligand-independent mechanisms.  相似文献   

6.
In order to gain a better understanding of the distinctive mechanisms of the various types of antiprogestins, we have characterized in vitro ligand binding, specific DNA binding and phosphorylation of progesterone receptor (PR) from T47D cells after treatment of cells with progestins (progesterone, R5020) and antiprogestins (RU486, ZK98299, Org 31806 and Org 31710). Treatment of the cells with R5020 or PR antagonists, with the exception of ZK98299, resulted in a quantitative upshift of PR-A and PR-B indicative of ligand/DNA-induced phosphorylation of PR. Treatment of cells with RU486, Org 31710 or Org 31806, but not R5020 or ZK98299 resulted in detectable PR-progesterone response element complexes (PR-PREc) as assessed by gel mobility shift assay. Although treatment of cells with ZK98299, a type I PR antagonist, did not induce phosphorylation, the antiprogestins, Org 31806 and Org 31710, in a manner identical to RU486, did. Our data suggest that Org 31806 and Org 31710 affect propertie s of PR from T47D cells that are similar to RU486. (Mol Cell Biochem 175: 205–212, 1997)  相似文献   

7.
8.
9.
10.
11.
12.
13.
Modulation of calf uterine progesterone receptor (PR), in relation to its binding to synthetic steroids with known agonist (R5020) and antagonist (RU486) properties, was studied in the presence of iodoacetamide (IA), N-ethylmaleimide (NEM), beta-mercaptoethanol (MER), and dithiothreitol (DTT). Pretreatment of uterine cytosol at 4 degrees C with NEM (4-10 mM) reduced the binding of [3H]RU486 to PR by 40%, but [3H] R5020 binding was completely abolished. Whereas IA (2-10 mM) treatment did not affect [3H]RU486 binding, [3H]R5020 binding was totally eliminated. DTT or MER increased the binding of both steroids slightly (15%). [3H]R5020- or [3H]RU486-receptor complexes (Rc) migrated in the 8 S region and were eliminated upon pretreatment with NEM. At 23 degrees C, DTT increased the amount of 4 S [3H]R5020-Rc, but had no effect on the [3H]RU486-Rc. In the control, [3H]RU486 binding to the 8 S PR could be competed with radioinert R5020 or RU486, but R5020 failed to compete in the presence of IA. The heat-treated [3H]R5020- and [3H]RU486-Rc showed reduced binding to DNA-cellulose in the presence of NEM and IA. The results of our study suggest that SH group modifications differentially influence the properties of mammalian PR complexed with either R5020 or RU486. In the presence of IA, the [3H]RU486-Rc remained in the 8 S form when incubated at 23 degrees C, indicating that RU486 binding causes conformational changes in PR which are distinct from those that result upon R5020 binding.  相似文献   

14.
15.
V K Moudgil  C Hurd 《Biochemistry》1987,26(16):4993-5001
Effects of different transforming agents were examined on the sedimentation characteristics of calf uterine progesterone receptor (PR) bound to the synthetic progestin [3H]R5020 or the known progesterone antagonist [3H]RU38486 (RU486). [3H]R5020-receptor complexes [progesterone-receptor complexes (PRc)] sedimented as fast migrating 8S moieties in 8-30% linear glycerol gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of cytosol containing [3H]PRc at 23 degrees C for 10-60 min, or at 0 degrees C with 0.15-0.3 M KCl or 1-10 mM ATP, caused a gradual transformation of PRc to a slow sedimenting 4S form. This 8S to 4S transformation was molybdate sensitive. In contrast, the [3H]RU486-receptor complex exhibited only the 8S form. Treatment with all three activation agents caused a decrease in the 8S form but no concomitant transformation of the [3H]RU486-receptor complex into the 4S form. PR in the calf uterine cytosol incubated at 23 or at 0 degrees C with 0.3 M KCl or 10 mM ATP could be subsequently complexed with [3H]R5020 to yield the 4S form of PR. However, the cytosol PR transformed in the absence of any added ligand failed to bind [3H]RU486. Heat treatment of both [3H]R5020- and [3H]RU486-receptor complexes caused an increase in DNA-cellulose binding, although the extent of this binding was lower when RU486 was bound to receptors. An aqueous two-phase partitioning analysis revealed a significant change in the surface properties of PR following both binding to ligand and subsequent transformation. The partition coefficient (Kobsd) of the heat-transformed [3H]R5020-receptor complex increased about 5-fold over that observed with PR at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
RU486 is a recently described antiprogesterone. In order to be able to understand its mechanism of action it is necessary to analyze its effect on a discrete gene product. We show here that the induction of uteroglobin mRNA by progesterone in the rabbit endometrium may be a suitable model for such studies since RU486 totally inhibits this effect without itself exerting any agonistic activity. Moreover, RU486, which does not bind to the estrogen receptor and is devoid of general antiestrogenic activity, partially inhibits the induction by estradiol of uteroglobin mRNA. Studies of the interaction between [3H]RU486 and the progesterone receptor have been undertaken with the aim of understanding the antagonistic effect of this compound. The binding to DNA-cellulose of heat-activated [3H]RU486-receptor complexes was slightly decreased (37%) when compared with that of the agonist [3H]R5020-receptor complexes (47%). Detailed analysis of this difference showed that it was due to both a decreased activation of complexes and to a diminished affinity of activated complexes towards DNA. The change in activation was shown by the fact that at high concentrations of DNA, where all activated complexes are bound, agonist-receptor complexes were bound to DNA in higher proportion than antagonist-receptor complexes. Moreover a difference was also observed when studying the binding of agonist-receptor and antagonist-receptor complexes to charged resins (phosphocellulose, DEAE-cellulose) which are known to discriminate between activated and non-activated complexes. Decreased affinity to DNA of antagonist-receptor complexes was shown by studying their binding at various concentrations of DNA, either in crude cytosol or after isolating a homogenous population of activated-receptor complexes by DNA-cellulose chromatography and by comparing the salt extraction from DNA-cellulose of agonist-receptor and antagonist-receptor complexes. Both effects (decreased activation and diminished affinity towards DNA) were relatively moderate and could account only for a small decrease in the agonistic activity of RU486. Thus, the fact that this compound is a complete antagonist without any agonistic activity can only be explained by a defect in some further step of hormone action as, for instance in the specific interaction with the regulatory regions of the uteroglobin gene. No immunological difference could be detected between [3H]R5020-receptor and [3H]RU486-receptor complexes, both interacted with the five monoclonal antibodies raised against purified R5020-receptor complexes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
Progesterone receptor (PR), a member of the nuclear receptor superfamily, is a key regulator of several processes in reproductive function. We have studied the dynamics of the interaction of PR with a natural target promoter in living cells through the use of fluorescence recovery after photobleaching (FRAP) analysis and also have characterized the dynamics of the interaction of PR with the mouse mammary tumor virus (MMTV) promoter reconstituted into chromatin in vitro. In photobleaching experiments, PR in the presence of the agonist R5020 exhibits rapid exchange with the MMTV promoter in living cells. Two PR antagonists, RU486 and ZK98299, have opposite effects on receptor dynamics in vivo. In the presence of RU486, PR binds to the promoter and is exchanged more slowly than the agonist-activated receptor. In contrast, PR bound to ZK98299 is not localized to the promoter and exhibits higher mobility in the nucleoplasm than the agonist-bound receptor. Significantly, PR bound to R5020 or RU486 can recruit the SWI/SNF chromatin remodeling complex to the promoter, but PR activated with ZK98299 cannot. Furthermore, we found ligand-specific active displacement of PR from the MMTV promoter during chromatin remodeling in vitro and conclude that the interaction of PR with chromatin is highly dynamic both in vivo and in vitro. We propose that factor displacement during chromatin remodeling is an important component of receptor mobility and that ligand-specific interactions with remodeling complexes can strongly influence receptor nuclear dynamics and rates of exchange with chromatin in living cells.  相似文献   

20.
构建可经RU486诱导表达载体,并证实其对基因表达的调控作用。通过分子生物学技术,改造了含有GLP65反式作用调控因子和GAL4杂合启动子的PRS质粒。PCR扩增BGHpolyA片段,并引入需要的酶切位点。在GLP65调控区上游添加了hCMV启动子,在GAL4杂合启动子下游加入了荧光素酶报告基因。同时,为减少两个转录单元之间的潜在干扰,加入了1.2 kb的小鸡β珠蛋白绝缘子。经PCR和限制性酶切及测序证实了载体的正确性。在体外转染HEK293细胞后,运用双荧光素酶报告基因技术鉴定了该系统的调控能力。加入诱导剂RU486后,可以诱导表达荧光素酶,并在一定范围内两者呈正比,最高可以实现荧光素酶的40余倍的表达,而没有RU486时,几乎没有报告基因的表达,表明RU486诱导调控载体构建成功,可实现对目的基因的表达时间和表达水平的精确调控,为进一步的基因调控研究和和基因治疗提供了良好的工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号