首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
2.
During a lytic gammaherpesvirus infection, host gene expression is severely restricted by the global degradation and altered 3' end processing of mRNA. This host shutoff phenotype is orchestrated by the viral SOX protein, yet its functional significance to the viral lifecycle has not been elucidated, in part due to the multifunctional nature of SOX. Using an unbiased mutagenesis screen of the murine gammaherpesvirus 68 (MHV68) SOX homolog, we isolated a single amino acid point mutant that is selectively defective in host shutoff activity. Incorporation of this mutation into MHV68 yielded a virus with significantly reduced capacity for mRNA turnover. Unexpectedly, the MHV68 mutant showed little defect during the acute replication phase in the mouse lung. Instead, the virus exhibited attenuation at later stages of in vivo infections suggestive of defects in both trafficking and latency establishment. Specifically, mice intranasally infected with the host shutoff mutant accumulated to lower levels at 10 days post infection in the lymph nodes, failed to develop splenomegaly, and exhibited reduced viral DNA levels and a lower frequency of latently infected splenocytes. Decreased latency establishment was also observed upon infection via the intraperitoneal route. These results highlight for the first time the importance of global mRNA degradation during a gammaherpesvirus infection and link an exclusively lytic phenomenon with downstream latency establishment.  相似文献   

3.
4.
5.
6.
7.
8.
9.
The Kaposi's sarcoma-associated herpesvirus (KSHV) SOX protein, encoded by ORF37, promotes shutoff of host cell gene expression during lytic viral replication by dramatically impairing mRNA accumulation. SOX is the KSHV homolog of the alkaline exonuclease of other herpesviruses, which has been shown to function as a DNase involved in processing and packaging the viral genome. Although the exonuclease activity of these proteins is widely conserved across all herpesviruses, the host shutoff activity observed for KSHV SOX is not. We show here that SOX expression sharply reduces the half-life of target mRNAs. Extensive mutational analysis reveals that the DNase and host shutoff activities of SOX are genetically separable. Lesions affecting the DNase activity cluster in conserved regions of the protein, but residues critical for mRNA degradation are not conserved across the viral family. Additionally, we present evidence suggesting that the two different functions of SOX occur within distinct cellular compartments-DNase activity in the nucleus and host shutoff activity in the cytoplasm.  相似文献   

10.
11.
X linked lymphoproliferative disease (XLP) is an inherited immunodeficiency resulting from mutations in the gene encoding the slam associated protein (SAP). One of the defining characteristics of XLP is extreme susceptibility to infection with Epstein-Barr virus (EBV), a gammaherpesvirus belonging to the genus Lymphocryptovirus, often resulting in fatal infectious mononucleosis (FIM). However, infection of SAP deficient mice with the related Murine gammaherpesvirus 68 (MHV68), a gammaherpesvirus in the genus Rhadinovirus, does not recapitulate XLP. Here we show that MHV68 inefficiently establishes latency in B cells in SAP deficient mice due to insufficient CD4 T cell help during the germinal center response. Although MHV68 infected B cells can be found in SAP-deficient mice, significantly fewer of these cells had a germinal center phenotype compared to SAP-sufficient mice. Furthermore, we show that infected germinal center B cells in SAP-deficient mice fail to proliferate. This failure to proliferate resulted in significantly lower viral loads, and likely accounts for the inability of MHV68 to induce a FIM-like syndrome. Finally, inhibiting differentiation of T follicular helper (TFH) cells in SAP-sufficient C57Bl/6 mice resulted in decreased B cell latency, and the magnitude of the TFH response directly correlated with the level of infection in B cells. This requirement for CD4 T cell help during the germinal center reaction by MHV68 is in contrast with EBV, which is thought to be capable of bypassing this requirement by expressing viral proteins that mimic signals provided by TFH cells. In conclusion, the outcome of MHV68 infection in mice in the setting of loss of SAP function is distinct from that observed in SAP-deficient patients infected with EBV, and may identify a fundamental difference between the strategies employed by the rhadinoviruses and lymphocryptoviruses to expand B cell latency during the early phase of infection.  相似文献   

12.
Gammaherpesviruses, such as Epstein-Barr virus (EBV), are ubiquitous cancer-associated pathogens that interact with DNA damage response, a tumor suppressor network. Chronic gammaherpesvirus infection and pathogenesis in a DNA damage response-insufficient host are poorly understood. Ataxia-telangiectasia (A-T) is associated with insufficiency of ataxia-telangiectasia mutated (ATM), a critical DNA damage response kinase. A-T patients display a pattern of anti-EBV antibodies suggestive of poorly controlled EBV replication; however, parameters of chronic EBV infection and pathogenesis in the A-T population remain unclear. Here we demonstrate that chronic gammaherpesvirus infection is poorly controlled in an animal model of A-T. Intriguingly, in spite of a global increase in T cell activation and numbers in wild-type (wt) and ATM-deficient mice in response to mouse gammaherpesvirus 68 (MHV68) infection, the generation of an MHV68-specific immune response was altered in the absence of ATM. Our finding that ATM expression is necessary for an optimal adaptive immune response against gammaherpesvirus unveils an important connection between DNA damage response and immune control of chronic gammaherpesvirus infection, a connection that is likely to impact viral pathogenesis in an ATM-insufficient host.  相似文献   

13.
Short interspersed nuclear elements (SINEs) are highly abundant, RNA polymerase III-transcribed noncoding retrotransposons that are silenced in somatic cells but activated during certain stresses including viral infection. How these induced SINE RNAs impact the host-pathogen interaction is unknown. Here we reveal that during murine gammaherpesvirus 68 (MHV68) infection, rapidly induced SINE RNAs activate the antiviral NF-κB signaling pathway through both mitochondrial antiviral-signaling protein (MAVS)-dependent and independent mechanisms. However, SINE RNA-based signaling is hijacked by the virus to enhance viral gene expression and replication. B2 RNA expression stimulates IKKβ-dependent phosphorylation of the major viral lytic cycle transactivator protein RTA, thereby enhancing its activity and increasing progeny virion production. Collectively, these findings suggest that SINE RNAs participate in the innate pathogen response mechanism, but that herpesviruses have evolved to co-opt retrotransposon activation for viral benefit.  相似文献   

14.
15.
Messenger RNA degradation is a fundamental cellular process that plays a critical role in regulating gene expression by controlling both the quality and the abundance of mRNAs in cells. Naturally, viruses must successfully interface with the robust cellular RNA degradation machinery to achieve an optimal balance between viral and cellular gene expression and establish a productive infection in the host. In the past several years, studies have discovered many elegant strategies that viruses have evolved to circumvent the cellular RNA degradation machinery, ranging from disarming the RNA decay pathways and co-opting the factors governing cellular mRNA stability to promoting host mRNA degradation that facilitates selective viral gene expression and alters the dynamics of host–pathogen interaction. This review summarizes the current knowledge of the multifaceted interaction between viruses and cellular mRNA degradation machinery to provide an insight into the regulatory mechanisms that influence gene expression in viral infections. This article is part of a Special Issue entitled: RNA Decay mechanisms.  相似文献   

16.
17.
KS Gray  CM Collins  SH Speck 《PloS one》2012,7(8):e43196
Herpesviruses are characterized by their ability to establish lifelong latent infection. The gammaherpesvirus subfamily is distinguished by lymphotropism, establishing and maintaining latent infection predominantly in B lymphocytes. Consequently, gammaherpesvirus pathogenesis is closely linked to normal B cell physiology. Murine gammaherpesvirus 68 (MHV68) pathogenesis in laboratory mice has been extensively studied as a model system to gain insights into the nature of gammaherpesvirus infection in B cells and their associated lymphoid compartments. In addition to B cells, MHV68 infection of macrophages contributes significantly to the frequency of viral genome-positive cells in the peritoneal cavity throughout latency. The omentum, a sheet of richly-vascularized adipose tissue, resides in the peritoneal cavity and contains clusters of immune cell aggregates termed milky spots. Although the value of the omentum in surgical wound-healing has long been appreciated, the unique properties of this tissue and its contribution to both innate and adaptive immunity have only recently been recognized. To determine whether the omentum plays a role in gammaherpesvirus pathogenesis we examined this site during early MHV68 infection and long-term latency. Following intraperitoneal infection, immune aggregates within the omentum expanded in size and number and contained virus-infected cells. Notably, a germinal-center B cell population appeared in the omentum of infected animals with earlier kinetics and greater magnitude than that observed in the spleen. Furthermore, the omentum harbored a stable frequency of viral genome-positive cells through early and into long-term latency, while removal of the omentum prior to infection resulted in a slight decrease in the establishment of splenic latency following intraperitoneal infection. These data provide the first evidence that the omentum is a site of chronic MHV68 infection that may contribute to the maintenance of chronic infection.  相似文献   

18.
19.
20.
The ORF75c tegument protein of murine gammaherpesvirus 68 (MHV68) promotes the degradation of the antiviral promyelocytic leukemia (PML) protein. Surprisingly, MHV68 expressing a degradation-deficient ORF75c replicated in cell culture and in mice similar to the wild-type virus. However, in cells infected with this mutant virus, PML formed novel track-like structures that are induced by ORF61, the viral ribonucleotide reductase large subunit. These findings may explain why ORF75c mutant viruses unable to degrade PML had no demonstrable phenotype after infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号