首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
Objective: To evaluate insulin action on substrate use and insulinemia in nondiabetic class III obese patients before and after weight loss induced by bariatric surgery. Research Methods and Procedures: Thirteen obese patients (four men/nine women; BMI = 56.3 ± 2.7 kg/m2) and 13 lean subjects (five men/eight women; BMI = 22.4 ± 0.5 kg/m2) underwent euglycemic clamp, oral glucose tolerance test, and indirect calorimetry. The study was carried out before (Study I) and after (~40% relative to initial body weight; Study II) weight loss induced by Roux‐en‐Y Gastric bypass with silastic ring surgery. Results: The obese patients were insulin resistant (whole‐body glucose use = 19.7 ± 1.5 vs. 51.5 ± 2.4 μmol/min per kilogram fat‐free mass, p < 0.0001) and hyperinsulinemic in the fasting state (332 ± 86 vs. 85 ± 5 pM, p < 0.0001) and during the oral glucose tolerance test compared with the lean subjects. Fasting plasma insulin normalized after weight loss, whereas whole‐body glucose use increased (35.5 ± 3.7 μmol/min per kilogram fat‐free mass, p < 0.05 vs. Study I). The higher insulin clearance of obese did not change during the follow‐up period. Insulin‐induced glucose oxidation and nonoxidative glucose disposal were lower in the obese compared with the lean group (all p < 0.05). In Study II, the former increased slightly, whereas nonoxidative glucose disposal reached values similar to those of the control group. Fasting lipid oxidation was higher in the obese than in the control group and did not change significantly in Study II. The insulin effect on lipid oxidation was slightly improved (p = 0.01 vs. Study I). Discussion: The rapid weight loss after surgery in obese class III patients normalized insulinemia and improved insulin sensitivity almost entirely due to glucose storage, whereas fasting lipid oxidation remained high.  相似文献   

2.
Objective: The aim of this study was to examine the association between the clinical and biochemical features of the metabolic syndrome and quantity and type of alcohol intake in the severely obese. Research Methods and Procedures: A cross‐sectional study was performed in 486 consecutive severely obese subjects. Data on alcohol consumption was collected by serial clinical interviews and a questionnaire. The relationship between alcohol intake and the clinical and serum chemistry features of the metabolic syndrome was analyzed by multiple statistical techniques. Laboratory measures included lipid profile, fasting blood glucose, hemoglobin A1c, and fasting serum insulin. An indirect index of insulin resistance was calculated using the log‐transformed fasting insulin and glucose product. Results: There were 486 subjects, 84% women, with a mean age of 40.6 ± 10 years (range, 16 to 71 years) and a body mass index of 45.3 ± 7 kg/m2 (range, 34 to 77 kg/m2). Alcohol consumers (N = 276) showed a marked reduction in the adjusted odds ratio of type 2 diabetes (odds ratio = 0.29; 95% confidence interval, 0.16 to 0.55) compared with rare or nonconsumers (N = 210). There was a U‐shaped relationship between the amount and frequency of alcohol consumption and fasting triglyceride, fasting glucose, hemoglobin A1c, and index of insulin resistance measurements. Consumers of <100 g/wk had more favorable measures. The effect was attenuated when diabetics were excluded from the analysis. Timing of alcohol consumption did not influence outcome measures. Discussion: Light‐to‐moderate alcohol consumption is associated with a lower prevalence of type 2 diabetes, reduced insulin resistance, and more favorable vascular risk profile in the severely obese. We would propose that light to moderate alcohol consumption should not be discouraged in the severely obese.  相似文献   

3.
Objective: The effects of a very low‐carbohydrate (VLC), high‐fat (HF) dietary regimen on metabolic syndrome were compared with those of an isocaloric high‐carbohydrate (HC), low‐fat (LF) regimen in dietary obese rats. Research Methods and Procedures: Male Sprague‐Dawley rats, made obese by 8 weeks ad libitum consumption of an HF diet, developed features of the metabolic syndrome vs. lean control (C) rats, including greater visceral, subcutaneous, and hepatic fat masses, elevated plasma cholesterol levels, impaired glucose tolerance, and fasting and post‐load insulin resistance. Half of the obese rats (VLC) were then fed a popular VLC‐HF diet (Weeks 9 and 10 at 5% and Weeks 11 to 14 at 15% carbohydrate), and one‐half (HC) were pair‐fed an HC‐LF diet (Weeks 9 to 14 at 60% carbohydrate). Results: Energy intakes of pair‐fed VLC and HC rats were less than C rats throughout Weeks 9 to 14. Compared with HC rats, VLC rats exhibited impaired insulin and glycemic responses to an intraperitoneal glucose load at Week 10 and lower plasma triacylglycerol levels but retarded loss of hepatic, retroperitoneal, and total body fat at Week 14. VLC, HC, and C rats no longer differed in body weight, plasma cholesterol, glucose tolerance, or fasting insulin resistance at Week 14. Progressive decreases in fasting insulin resistance in obese groups paralleled concomitant reductions in hepatic, retroperitoneal, and total body fat. Discussion: When energy intake was matched, the VLC‐HF diet provided no advantage in weight loss or in improving those components of the metabolic syndrome induced by dietary obesity and may delay loss of hepatic and visceral fat as compared with an HC‐LF diet.  相似文献   

4.
Objective: To characterize dyslipidemia before and after weight loss in the severely obese. Research Methods and Procedures: Five hundred fifteen subjects who had Lap‐Band surgery were followed with yearly conventional lipid profiles for up to 4 years. Preoperative data were collected from the most recent 381 subjects, and predictors of dyslipidemia were sought. One hundred seventy‐one subjects completed a 1‐year review, providing data to assess predictors of change in lipids. Results: Favorable changes in fasting triglycerides (TG), high‐density lipoprotein‐cholesterol (HDL‐C), and total cholesterol (TC):HDL‐C ratio occurred within 1 year. All improvements were maintained up to 4 years. Male gender, central obesity, elevated fasting glucose, and insulin resistance were associated with less favorable lipid levels. Fasting plasma glucose best predicted TG (r = 0.46, p < 0.001), whereas insulin sensitivity using the homeostatic model assessment (HOMA %S) correlated best with the HDL‐C (r =0.34, p < 0.001). Higher preoperative fasting glucose best predicted the decrease in TG; improved HOMA %S with weight loss correlated best with HDL‐C. The extent of weight loss had limited influence on lipid changes. However, low preoperative HOMA %S was associated with lower weight loss. Greater weight loss was associated with more favorable lipid measures after controlling for preoperative HOMA %S. Discussion: Dyslipidemia of obesity is related to weight distribution, insulin sensitivity, and impaired glucose tolerance. Improvement with weight loss is related to the decrease in fasting glucose, improvement in insulin sensitivity, and the extent of weight lost. Improvement in dyslipidemia is sustained with long‐term weight loss.  相似文献   

5.
Objective: The objective was to determine the prevalence and heritability of obesity and risk factors associated with metabolic syndrome (MS) in a pedigreed colony of vervet monkeys. Design: A cross‐sectional study of plasma lipid and lipoprotein concentrations, glycemic indices, and morphometric measures with heritability calculated from pedigree analysis. A selected population of females was additionally assessed for insulin sensitivity and glucose tolerance. Subjects: All mature male (n = 98), pregnant (n = 40) and non‐pregnant female (n = 157) vervet monkeys were included in the study. Seven non‐pregnant females were selected on the basis of high or average glycated hemoglobin (GHb) for further characterization of carbohydrate metabolism. Measurements: Morphometric measurements included body weight, length, waist circumference, and calculated BMI. Plasma lipids [total cholesterol (TC), triglycerides (TG), high‐density lipoprotein cholesterol (HDL‐C)] and glycemic measures (fasting blood glucose, insulin, and GHb) were measured. A homeostasis model assessment index was further reported. Glucose tolerance testing and hyperinsulinemic‐euglycemic clamps were performed on 7 selected females. Conclusion: Vervet monkeys demonstrate obesity, insulin resistance, and associated changes in plasma lipids even while consuming a low‐fat (chow) diet. Furthermore, these parameters are heritable. Females are at particular risk for central obesity and an unfavorable lipid profile (higher TG, TC, and no estrogen‐related increase in HDL‐C). Selection of females by elevated GHb indicated impaired glucose tolerance and was associated with central obesity. This colony provides a unique opportunity to study the development of obesity‐related disorders, including both genetic and environmental influences, across all life stages.  相似文献   

6.
Obesity in adolescents is associated with metabolic risk factors for type 2 diabetes, particularly insulin resistance and excessive accumulation of intrahepatic triglyceride (IHTG). The purpose of this study was to evaluate the effect of moderate weight loss on IHTG content and insulin sensitivity in obese adolescents who had normal oral glucose tolerance. Insulin sensitivity, assessed by using the hyperinsulinemic–euglycemic clamp technique in conjunction with stable isotopically labeled tracer infusion, and IHTG content, assessed by using magnetic resonance spectroscopy, were evaluated in eight obese adolescents (BMI ≥95th percentile for age and sex; age 15.3 ± 0.6 years) before and after moderate diet‐induced weight loss (8.2 ± 2.0% of initial body weight). Weight loss caused a 61.6 ± 8.5% decrease in IHTG content (P = 0.01), and improved both hepatic (56 ± 18% increase in hepatic insulin sensitivity index, P = 0.01) and skeletal muscle (97 ± 45% increase in insulin‐mediated glucose disposal, P = 0.01) insulin sensitivity. Moderate diet‐induced weight loss decreases IHTG content and improves insulin sensitivity in the liver and skeletal muscle in obese adolescents who have normal glucose tolerance. These results support the benefits of weight loss therapy in obese adolescents who do not have evidence of obesity‐related metabolic complications during a standard medical evaluation.  相似文献   

7.
Objective: In healthy lean individuals, changes in insulin sensitivity occurring as a consequence of a 2‐day dexamethasone administration are compensated for by changes in insulin secretion, allowing glucose homeostasis to be maintained. This study evaluated the changes in glucose metabolism and insulin secretion induced by short‐term dexamethasone administration in obese women. Research Methods and Procedures: Eleven obese women with normal glucose tolerance were studied on two occasions, without and after 2 days of low‐dose dexamethasone administration. A two‐step hyperglycemic clamp (7.5 and 10 mM glucose) with 6, 6 2H2 glucose was used to assess insulin secretion and whole body glucose metabolism. Results were compared with those obtained in a group of eight lean women. Results: Without dexamethasone, obese women had higher plasma insulin concentrations in the fasting state, during the first phase of insulin secretion, and at the two hyperglycemic plateaus. However, they had normal whole body glucose metabolism compared with lean women, indicating adequate compensation. After dexamethasone, obese women had a 66% to 92% increase in plasma insulin concentrations but a 15.4% decrease in whole body glucose disposal. This contrasted with lean women, who had a 91% to 113% increase in plasma insulin concentrations, with no change in whole body glucose disposal. Discussion: Dexamethasone administration led to a significant reduction in whole body glucose disposal at fixed glycemia in obese but not lean women. This indicates that obese women are unable to increase their insulin secretion appropriately.  相似文献   

8.
Objective: To evaluate interactions among leptin, adiponectin, resistin, ghrelin, and proinflammatory cytokines [tumor necrosis factor receptors (TNFRs), interleukin‐6 (IL‐6)] in nonmorbid and morbid obesity. Research Methods and Procedures: We measured these hormones by immunoenzyme or radiometric assays in 117 nonmorbid and 57 morbidly obese patients, and in a subgroup of 34 morbidly obese patients before and 6 months after gastric bypass surgery. Insulin resistance by homeostasis model assessment, lipid profile, and anthropometrical measurements were also performed in all patients. Results: Average plasma lipids in morbidly obese patients were elevated. IL‐6, leptin, adiponectin, and resistin were increased and ghrelin was decreased in morbidly obese compared with nonmorbidly obese subjects. After adjusting for age, gender, and BMI in nonmorbidly obese, adiponectin was positively associated with HDLc and gender and negatively with weight (β = ?0.38, p < 0.001). Leptin and resistin correlated positively with soluble tumor necrosis factor receptor (sTNFR) 1 (β = 0.24, p = 0.01 and β = 0.28, p = 0.007). In the morbidly obese patients, resistin and ghrelin were positively associated with sTNFR2 (β = 0.39, p = 0.008 and β = 0.39, p = 0.01). In the surgically treated morbidly obese group, body weight decreased significantly and was best predicted by resistin concentrations before surgery (β = 0.45, p = 0.024). Plasma lipids, insulin resistance, leptin, sTNFR1, and IL‐6 decreased and adiponectin and ghrelin increased significantly. Insulin resistance improved after weight loss and correlated with high adiponectin levels. Discussion: TNFα receptors were involved in the regulatory endocrine system of body adiposity independently of leptin and resistin axis in nonmorbidly obese patients. Our results suggest coordinated roles of adiponectin, resistin, and ghrelin in the modulation of the obesity proinflammatory environment and that resistin levels before surgery treatment are predictive of the extent of weight loss after bypass surgery.  相似文献   

9.
Objective: To determine whether adipocyte differentiation‐related protein (ADRP), a lipid droplet—associated protein that binds to and sequesters intracellular fatty acids, is 1) expressed in human skeletal muscle and 2) differentially regulated in human skeletal muscle obtained from obese non‐diabetic (OND) and obese diabetic (OD) subjects. Research Methods and Procedures: Ten OND subjects and 15 OD subjects underwent a weight loss or pharmacological intervention program to improve insulin sensitivity. Anthropometric data, hemoglobin A1C, fasting glucose, lipids, and glucose disposal rate were determined at baseline and at completion of studies. Biopsies of the vastus lateralis muscle (SkM) were obtained in the fasting state from OND and OD subjects. Protein expression was determined by Western blotting. Results: ADRP was highly expressed in SkM from OND (4.4 ± 1.54 AU/10 μg, protein, n = 10) and OD (5.02 ± 1.33 AU/10 μg, n = 12) subjects. OND subjects undergoing weight loss had decreased triglyceride levels and improved insulin action. SkM ADRP content increased with weight loss from 5.14 ± 2.15 AU/10 μg to 9.92 ± 1.57 AU/10 μg (p < 0.025). OD subjects were treated with either troglitazone or metformin, together with glyburide, for 3 to 4 months. Both treatments attained similar levels of glycemic control. OD subjects with lower baseline ADRP content (2.85 ± 1.07 AU/10 μg, n = 6) displayed up‐regulation of ADRP expression (to 9.27 ± 2.76 AU/10 μg, p < 0.025). Discussion: ADRP is the predominant lipid droplet—associated protein in SkM, and low ADRP expression is up‐regulated in circumstances of improved glucose tolerance. Up‐regulation of ADRP may act to sequester fatty acids as triglycerides in discrete lipid droplets that could protect muscle from the detrimental effects of fatty acids on insulin action and glucose tolerance.  相似文献   

10.
Objective: Offspring of diabetic or hypertensive patients are insulin resistant at a prediabetic/prehypertensive stage. We tested the hypothesis that insulin action may be impaired in the offspring of obese nondiabetic parents. Research Methods and Procedures: Twenty‐one lean offspring of nonobese subjects [(OL) 22 ± 3 years of age] were matched to 23 lean offspring of obese subjects (OOb) by gender distribution, age, BMI, and waist circumference. Anthropometry, oral glucose tolerance, in vivo insulin sensitivity [by a euglycemic insulin clamp (6 pmol/min per kilogramFFM; where FFM represents fat‐free mass)], and thermogenesis (by indirect calorimetry) were measured in each subject. The study subjects were from a population of 267 nuclear families (one offspring and both his/her parents) in which there was statistically significant (χ2 = 30.2, p = 0.001) concordance of BMI between parents and offspring. Results: In comparing OOb with OL, no statistically significant difference or trend toward a difference was detected in fasting plasma glucose and insulin concentrations, glucose and insulin responses to oral glucose, insulin sensitivity [metabolism value = 45 ± 12 (OOb) vs. 47 ± 17 μmol/min per kilogramFFM (OL)], insulin‐induced inhibition of protein and lipid oxidation, stimulation of glucose oxidation and nonoxidative glucose disposal, respiratory quotient, resting energy expenditure, and glucose‐induced thermogenesis. Discussion: The metabolic similarity between lean offspring of obese parents and those of nonobese parents suggests that insulin resistance and its correlates are not co‐inherited with the predisposition to develop obesity.  相似文献   

11.
Objective: The recently described adipokine visfatin is produced in visceral fat and has been suggested to influence insulin resistance. To investigate whether visfatin concentrations are related to changes in body weight, this adipokine was measured in insulin‐resistant severely obese patients before and after gastroplastic surgery. Research Methods and Procedures: Visfatin, interleukin‐6, high‐sensitivity C‐reactive protein, homeostasis model assessment of insulin resistance (HOMA‐IR), and other clinical parameters were assessed in 36 severely obese subjects (28 female; mean age, 43 years) with a median BMI of 44.3 kg/m2 (95% confidence interval, 43.3 to 48.1 kg/m2). Results: After surgery, BMI decreased to a median of 31.9 kg/m2 (30.1 to 35.1 kg/m2) (p < 0.0001). Median visfatin concentrations increased significantly after weight loss [70.9 ng/mL (61.4 to 75.6 ng/mL) vs. 86.4 ng/mL (79.4 to 89.8 ng/mL); p < 0.0005]. This increase correlated with the decrease of insulin and HOMA‐IR and was associated with a reduction in plasma interleukin‐6 and high‐sensitivity C‐reactive protein concentrations. Discussion: Massive weight loss after gastroplastic surgery is accompanied by an increase in circulating concentrations of the novel adipokine visfatin. This increase correlates with the decrease in plasma insulin concentrations and HOMA‐IR.  相似文献   

12.
Objective: Different facts suggest that the insulin growth factor (IGF)/ insulin growth factor‐binding protein (IGFBP) system may be regulated by factors other than growth hormone. It has been proposed that, in healthy subjects, free IGF‐I plays a role in glucose metabolism. The role of free IGF‐I in glucose homeostasis in insulin resistance is poorly understood. This study was undertaken to evaluate the effects of acute changes in plasma glucose and insulin levels on free IGF‐I and IGFBP‐1 in obese and non‐obese subjects. Research Methods and Procedures: Nineteen lean and 24 obese subjects were investigated. A frequently sampled intravenous glucose tolerance test was performed. Free IGF‐I and IGFBP‐1 were determined at 0, 19, 22, 50, 100, and 180 minutes. Results: Basal free IGF‐I levels tended to be higher and IGFBP‐1 lower in obese than in lean subjects. IGFBP‐1 levels inversely correlated with basal insulin concentration. To determine the effects of insulin on the availability of free IGF‐I and IGFBP‐1, changes in their plasma concentrations were measured during a frequently sampled intravenous glucose tolerance test. After insulin administration, a significant suppression of free IGF‐I at 22% was observed in lean subjects. In contrast, plasma‐free IGF‐I levels remained essentially unchanged in the obese group. The differences between both groups were statistically significant at 100 minutes (p < 0.01) and 180 minutes (p < 0.05). Serum IGFBP‐1 was suppressed to a similar extent in both groups. Discussion: These data suggest that the concentrations of free IGF‐I and IGFBP‐1 are differentially regulated by obesity. Obesity‐related insulin resistance leads to unsuppressed free IGF‐I levels.  相似文献   

13.
Longitudinal effects of a very low–carbohydrate (VLC) and a calorie‐matched high‐carbohydrate (HC) weight reduction diet were compared in dietary obese Sprague–Dawley rats exhibiting impaired glucose tolerance and insulin resistance. Obese rats were divided into weight‐matched groups: (i) VLC rats consumed an energy‐restricted 5% carbohydrate, 60% fat diet for 8 weeks, (ii) HC rats consumed an isocaloric 60% carbohydrate, 15% fat diet, and (iii) HF rats consumed a high‐fat diet ad libitum. HC and VLC rats showed similar reductions in body fat and hepatic lipid at the midpoint of the weight‐reduction program, indicating effects due to energy deficit. At the end point, however, HC rats showed greater reductions in total and percent body fat, hepatic lipid and intramuscular lipid than did VLC rats, suggesting that diet composition induced changes in the relative efficiencies of the HC and VLC diets over time. HC rats showed marked improvement in glucose tolerance at the midpoint and end point, whereas VLC rats showed no improvement. Impaired glucose tolerance in VLC rats at the end point was due to insulin resistance and an attenuated insulin secretory response. Glucose tolerance in energy‐restricted rats correlated negatively with hepatic and intramuscular lipid levels, but not visceral or total fat mass. These findings demonstrate that adaptations to diet composition eventually enabled HC rats to lose more body fat than VLC rats even though energy intakes were equal, and suggest that the elevated levels of hepatic and intramuscular lipid associated with VLC diets might predispose to insulin resistance and impaired glucose tolerance despite weight loss.  相似文献   

14.

Objective:

The present study was planned to investigate, by means of quantitative FDG‐PET, how bariatric surgery (BS) modifies the metabolic pattern of the whole body and different tissues in slightly obese patients with type 2 diabetes mellitus (T2DM).

Design and Methods:

Before, 1 and 4 months after BS, 21 consecutive slightly obese T2DM patients underwent blood sampling to estimate plasma levels of glucose, insulin, glycosylated hemoglobin. At the same time points, these patients underwent a dynamic 18F‐FDG PET study of thorax and upper abdomen in fasting state and after washout of T2DM therapy. Gjedde‐Patlak analysis was applied to estimate glucose uptake in the whole body and in different tissues (myocardium, skeletal back muscle, adipose tissue, and liver).

Results:

Surgical intervention quickly lowered levels of both insulin and glucose documenting an amelioration of glucose tolerance. Similarly, skeletal muscle and myocardial glucose uptake significantly increased soon after surgery (P < 0.001 and P < 0.01 at 1 month versus baseline, respectively) and remained substantially stable thereafter. By contrast, glucose uptake slightly decreased from its baseline values in the liver (P < 0.01 at 4 months) while no response could be documented over time in the adipose tissue.

Conclusions:

These findings document that BS‐induced modification of glucose homeostasis in slightly obese T2DM patients is mostly due to an increase in muscle glucose consumption. The surgically modified metabolic pattern of these patients might be of interest as a new model to investigate mechanism underlying insulin resistance.  相似文献   

15.
Objective: To assess the main determinant of serum leptin concentration changes in morbidly obese patients treated by banded vertical gastroplasty. Research Methods and Procedures: Serum leptin and insulin concentrations, insulin resistance, BMI, body weight, and body fat mass in 18 obese women and 8 obese men treated by vertical banded gastroplasty were studied. Lean women and men subjects were used as controls. Results: Before surgery, serum leptin and insulin concentrations and insulin resistance index were significantly higher in morbidly obese patients than in control subjects. BMI, body fat mass, and serum triacylglycerol concentrations were also significantly higher in obese than in lean subjects. All of these parameters gradually decreased during 50 weeks after surgery. Univariate regression analysis displayed significant correlations between the following: serum leptin concentration and BMI (and body fat mass), serum leptin concentration and serum insulin concentration, and serum leptin concentration and insulin resistance index. Multivariate regression analysis indicated that only BMI was independently correlated with the decrease in serum leptin concentration. Discussion: Obtained data suggest the following: 1) vertical banded gastroplasty causes reduction of body weight, serum leptin and insulin concentration, insulin resistance, and serum triacylglycerol concentration; and 2) BMI is the main determinant of the circulating leptin concentration in morbidly obese women after anti‐obesity surgery.  相似文献   

16.
Objective: Resistin is associated with insulin resistance in mice and may play a similar role in humans. The aim of our study was to examine the relationship of serum resistin level to body composition, insulin resistance, and related obesity phenotypes in humans. Research Methods and Procedures: Sixty‐four young (age 32 ± 10 years), obese (BMI 32.9 ± 5.6), nondiabetic subjects taking no medication, and 15 lean (BMI 21.1 ± 1.3) volunteers were studied cross‐sectionally. Thirty‐five of the subjects were also reevaluated after 1.5 years on a weight reduction program entailing dieting and exercise; changes of serum resistin were compared with changes of BMI, body composition, fat distribution, and several indices of insulin sensitivity derived from plasma glucose and serum insulin levels measured during 75‐g oral glucose tolerance test. Results: In a cross‐sectional analysis, serum resistin was significantly higher in obese subjects than in lean volunteers (24.58 ± 12.93 ng/mL; n = 64 vs. 12.83 ± 8.30 ng/mL; n = 15; p < 0.01), and there was a correlation between resistin level and BMI, when the two groups were combined (ρ = 0.35, p < 0.01). Although cross‐sectional analysis in obese subjects revealed no correlation between serum resistin and parameters related to adiposity or insulin resistance, longitudinal analysis revealed change in serum resistin to be positively correlated with changes in BMI, body fat, fat mass, visceral fat area, and mean glucose and insulin (ρ = 0.39, 0.40, 0.44, 0.50, 0.40, and 0.50; p = 0.02, 0.03, 0.02, <0.01, 0.02, and <0.01, respectively). Discussion: Resistin appears to be related to human adiposity and to be a possible candidate factor in human insulin resistance.  相似文献   

17.
Objective: Adipocytes secrete a series of acute phase proteins including serum amyloid A (SAA); the link with metabolic status is unknown. We studied the variations of expression of the SAA gene in adipose and liver tissues and of SAA serum levels, as well as their relationships with metabolic features during weight loss. Research Methods and Procedures: Plasmatic variations of SAA, inflammatory markers (high sensitivity C‐reactive protein, interleukin‐6, fibrinogen, and orosomucoid), and adipokines (adiponectin, leptin) were studied in 60 morbidly obese patients before and after gastric surgery. For 10 subjects, SAA mRNA expression was measured at baseline in subcutaneous white adipose tissue (scWAT) and visceral white adipose tissue (vWAT) and in the liver. The evolution of SAA mRNA expression was also studied after surgery in scWAT. Results: SAA serum concentration displayed a significant reduction 3 months after surgery and remained stable beyond 6 months. mRNA expression of inducible SAA isoforms (SAA 1 and 2) in scWAT was higher than in vWAT (p = 0.01) and the liver (p < 0.01) and correlated significantly with BMI, SAA, and high sensitivity C‐reactive protein serum concentrations but not with metabolic markers (glucose, insulin, lipid parameters, adiponectin). SAA serum level and its variation during weight loss significantly correlated with adiposity markers (BMI and adipocyte volume, p < 0.01) and inflammatory markers but not with variations of metabolic parameters. The variations of SAA expression in scWAT after surgery correlated with changes in BMI and SAA protein serum levels (p < 0.05). Discussion: SAA can be considered as a marker of adiposity‐induced low‐grade inflammation but not of the metabolic status of obese subjects.  相似文献   

18.
19.
Aims: This study aimed at determining whether oral administration of a probiotic strain, Lactobacillus casei strain Shirota (LcS), can improve insulin resistance, which is the underlying cause of obesity‐associated metabolic abnormalities, in diet‐induced obesity (DIO) mice. Methods and Results: DIO mice were fed a high‐fat diet without or with 0·05% LcS for 4 weeks and then subjected to an insulin tolerance test (ITT) or oral glucose tolerance test (OGTT). Oral administration of LcS not only accelerated the reduction in plasma glucose levels during the ITT, but also reduced the elevation of plasma glucose levels during the OGTT. In addition, plasma levels of lipopolysaccharide‐binding protein (LBP), which is a marker of endotoxaemia, were augmented in the murine models of obese DIO, ob/ob, db/db and KK‐Ay and compared to those of lean mice. LcS treatment suppressed the elevation of plasma LBP levels in DIO mice, but did not affect intra‐abdominal fat weight. Conclusions: LcS improves insulin resistance and glucose intolerance in DIO mice. The reduction in endotoxaemia, but not intra‐abdominal fat, may contribute to the beneficial effects of LcS. Significance and Impact of the Study: This study suggests that LcS has the potential to prevent obesity‐associated metabolic abnormalities by improving insulin resistance.  相似文献   

20.
Objective: Retinol binding protein‐4 (RBP4) has been reported to impair insulin sensitivity throughout the body. We investigated the relationship between serum RBP4 levels and adiposity indices as well as metabolic risk variables. Research Methods and Procedure: We recruited a total of 102 healthy women 21 to 67 years old. We assessed body composition by computed tomography and divided the study population into four groups based on body weight and visceral fat area (non‐obese without visceral adiposity, non‐obese with visceral adiposity, obese without visceral adiposity, and obese with visceral adiposity). Serum RBP4 levels were measured by radioimmunoassay. Results: Despite similar levels of total body fat, non‐obese women had lower systolic blood pressure, total cholesterol, triglyceride (TG), low‐density lipoprotein (LDL)‐cholesterol levels, insulin resistance indices, and RBP4 levels than non‐obese women with visceral adiposity and had higher high‐density lipoprotein‐cholesterol levels. Similarly, obese women without visceral adiposity had lower blood pressure, total cholesterol, TG levels, insulin resistance indices, and RBP4 levels than obese women with visceral adiposity. In addition, despite having increased body fat, obese women without visceral adiposity had lower TGs, insulin resistance indices, and serum RBP4 levels than non‐obese women with visceral adiposity. By step‐wise multiple regression analysis, visceral fat areas and LDL‐cholesterol levels independently affected RBP4 levels. Discussion: We determined that serum RBP4 levels are independently associated with visceral fat and LDL‐cholesterol levels. These results suggest that, irrespective of body weight, visceral obesity is an independent predictor of serum RBP4 levels, and RBP4 may represent a link between visceral obesity and cardiovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号