首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endogenous patterns of retinoic acid (RA) signaling in avian cardiac morphogenesis were characterized by localized expression of a key RA-synthetic enzyme, RALDH2, which displayed a biphasic pattern during heart development. RALDH2 immunoreactivity was initially apparent posterior to Hensen's node of stage 5-6 embryos and subsequently in somites and unsegmented paraxial and lateral plate mesoderm overlapping atrial precursors in the cardiogenic plate of stage 9- embryos. Initial RALDH2 synthesis in the posterior myocardium coincided with activation of the AMHC1 gene, a RA-responsive marker of inflow heart segments. A wave of RALDH2 synthesis then swept the myocardium in a posterior-to-anterior direction, reaching the outflow tract by stage 13, then fading from the myocardial layer. The second phase of RALDH2 expression, initiated at stage 18 in the proepicardial organ, persisted in migratory epicardial cells that completely enveloped the heart by stage 24. Early restriction of RALDH2 expression to the posterior cardiogenic plate, overlapping RA-inducible gene activation, provides evidence for commitment of posterior avian heart segments by localized production of RA, whereas subsequent RALDH2 expression exclusively in the migratory epicardium suggests a role for the morphogen in ventricular expansion and morphogenesis of underlying myocardial tissues.  相似文献   

2.
Establishment of anteroposterior (AP) polarity is one of the earliest decisions in cardiogenesis and plays an important role in the coupling between heart and blood vessels. Recent research implicated retinoic acid (RA) in the communication of AP polarity to the heart. We utilized embryo culture, in situ hybridization, morphometry, fate mapping and treatment with the RA pan-antagonist BMS493 to investigate the relationship between cardiac precursors and RA signalling. We describe two phases of AP signalling by RA, reflected in RALDH2 expression. The first phase (HH4-7) is characterized by increasing proximity between sino-atrial precursors and the lateral mesoderm expressing RALDH2. In this phase, RA signalling is consistent with diffusion of the morphogen from a large field rather than a single hot spot. The second phase (HH7-8) is characterized by progressive encircling of cardiac precursors by a field of RALDH2 originating from a dynamic and evolutionary-conserved caudorostral wave pattern in the lateral mesoderm. At this phase, cardiac AP patterning by RA is consistent with localized action of RA by regulated activation of the Raldh2 gene within an embryonic domain. Systemic treatment with BMS493 altered the cardiac fate map such that ventricular precursors were found in areas normally devoid of them. Topical application of BMS493 inhibited atrial differentiation in left anterior lateral mesoderm. Identification of the caudorostral wave of RALDH2 as the endogenous source of RA establishing cardiac AP fates provides a useful model to approach the mechanisms whereby the vertebrate embryo confers axial information on its organs.  相似文献   

3.
4.
5.
Retinoic acid (RA), the active derivative of vitamin A, has been implicated in various steps of cardiovascular development, but its contribution to early heart morphogenesis has not been clearly established in a mammalian system. To block endogenous RA synthesis, we have disrupted the gene encoding RALDH2, the first retinaldehyde dehydrogenase whose expression has been detected during early mouse post-implantation development. We describe here the heart abnormalities of the RA-deficient Raldh2 mutants that die in utero at gestational day 10.5. The embryonic heart tube forms properly, but fails to undergo rightward looping and, instead, forms a medial distended cavity. Expression of early heart determination factors is not altered in mutants, and the defect in heart looping does not appear to involve the Nodal/Lefty/Pitx2 pathway. Histological and molecular analysis reveal distinct anteroposterior components in the mutant heart tube, although posterior chamber (atria and sinus venosus) development is severely impaired. Instead of forming trabeculae, the developing ventricular myocardium consists of a thick layer of loosely attached cells. Ultrastructural analysis shows that most of the ventricular wall consists of prematurely differentiated cardiomyocytes, whereas undifferentiated cells remain clustered rostrally. We conclude that embryonic RA synthesis is required for realization of heart looping, development of posterior chambers and proper differentiation of ventricular cardiomyocytes. Nevertheless, the precise location of this synthesis may not be crucial, as these defects can mostly be rescued by systemic (maternal) RA administration. However, cardiac neural crest cells cannot be properly rescued in Raldh2(-/- )embryos, leading to outflow tract septation defects.  相似文献   

6.
7.
Retinoids and spinal cord development   总被引:3,自引:0,他引:3  
  相似文献   

8.
The segmental heritage of all vertebrates is evident in the character of the vertebral column. And yet, the extent to which direct translation of pattern from the somitic mesoderm and de novo cell and tissue interactions pattern the vertebral column remains a fundamental, unresolved issue. The elements of vertebral column pattern under debate include both segmental pattern and anteroposterior regional specificity. Understanding how vertebral segmentation and anteroposterior positional identity are patterned requires understanding vertebral column cellular and developmental biology. In this study, we characterized alignment of somites and vertebrae, distribution of individual sclerotome progeny along the anteroposterior axis and development of the axial skeleton in zebrafish. Our clonal analysis of zebrafish sclerotome shows that anterior and posterior somite domains are not lineage-restricted compartments with respect to distribution along the anteroposterior axis but support a 'leaky' resegmentation in development from somite to vertebral column. Alignment of somites with vertebrae suggests that the first two somites do not contribute to the vertebral column. Characterization of vertebral column development allowed examination of the relationship between vertebral formula and expression patterns of zebrafish Hox genes. Our results support co-localization of the anterior expression boundaries of zebrafish hoxc6 homologs with a cervical/thoracic transition and also suggest Hox-independent patterning of regionally specific posterior vertebrae.  相似文献   

9.
Using genetic approaches in the mouse, we show that the primary target tissue of retinoic acid (RA) action during eye morphogenesis is not the retina nor the corneal ectoderm, which both express RA-synthesizing retinaldehyde dehydrogenases (RALDH1 and RALDH3), but the neural crest cell-derived periocular mesenchyme (POM), which is devoid of RALDH. In POM, the effects of the paracrine RA signal are mediated by the nuclear RA receptors heterodimers RXRalpha/RARbeta and RXRalpha/RARgamma. These heterodimers appear to control: (1) the remodeling of the POM through activation of Eya2-related apoptosis; (2) the expression of Foxc1 and Pitx2, which play crucial roles in anterior eye segment development; and (3) the growth of the ventral retina. We additionally show that RALDH1 and RALDH3 are the only enzymes that are required for RA synthesis in the eye region from E10.5 to E13.5, and that patterning of the dorsoventral axis of the retina does not require RA.  相似文献   

10.
Retinoic acid (RA) plays an important role in cell growth and tissue development and is also a regulating factor of pituitary function. However, whether RA is generated in the pituitary gland and plays a role as a paracrine and/or autocrine hormone is generally unknown. RA is synthesized from retinoids through oxidation processes. Dehydrogenases catalyzing the oxidation of retinal to RA are members of the retinaldehyde dehydrogenase (RALDH) family. In this study, we examined the expression of RALDH1, RALDH2, and RALDH3 mRNA in the rat embryonic pituitary gland. By in situ hybridization with digoxigenin-labeled cRNA probes, we detected mRNA expression for RALDH2 and RALDH3, but not RALDH1. The expression of RALDH2 and RALDH3 was located in Rathke’s pouch at embryonic day 12.5 (E12.5) and subsequently in the developing anterior pituitary gland. We also used quantitative real-time polymerase chain reaction to analyze RALDH2 and RALDH3 mRNA expression levels during the development of the pituitary gland. We found that pituitary RALDH2 and RALDH3 mRNA levels were high at E17.5 and decreased markedly after birth. Our study is the first to show that RALDH2 and RALDH3, but not RALDH1, are expressed in the embryonic anterior pituitary gland of the rat.  相似文献   

11.
Retinoic acid (RA) plays a critical role in cell growth and tissue development and is also a regulatory factor of pituitary function. However, whether RA is generated in the pituitary gland and plays a role as a paracrine and/or autocrine factor is generally unknown. RA is synthesized from retinoids through oxidation processes. Dehydrogenases that catalyze the oxidation of retinal to RA are members of the retinaldehyde dehydrogenase (RALDH) family. Recently, we demonstrated that RALDH2 and RALDH3, but not RALDH1, were expressed in the developing anterior pituitary gland of rats, but the expression of RALDHs in the adult pituitary gland was not determined. Therefore, we have now examined the expression of RALDH1, RALDH2, and RALDH3 mRNAs in the pituitary gland of adult rats. Analysis by quantitative real-time polymerase chain reaction of adult pituitary glands has revealed a high level of RALDH1 mRNA but not of RALDH2 mRNA or RALDH3 mRNA. We have also detected mRNA expression for RALDH1 in the anterior pituitary gland by in situ hybridization with digoxigenin-labeled cRNA probes. Double-staining for RALDH1 mRNA and pituitary hormones or S-100 protein, a marker of folliculo-stellate cells (FS-cells), has revealed RALDH1 mRNA expression in a portion of prolactin-producing cells, marginal layer cells, and FS-cells. Our results suggest that RA is generated in the adult anterior pituitary gland, and that it may act locally on pituitary cells. This work was supported by a Grant-in-Aid for Young Scientists (B) from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (18790149) and by the Foundation of Growth Science.  相似文献   

12.
Id proteins are negative regulators of basic helix-loop-helix gene products and participate in many developmental processes. We have evaluated the expression of Id2 in the developing chick heart and found expression in the cardiac neural crest, secondary heart field, outflow tract, inflow tract, and anterior parasympathetic plexus. Cardiac neural crest ablation in the chick embryo, which causes structural defects of the cardiac outflow tract, results in a significant loss of Id2 expression in the outflow tract. Id2 is also expressed in Xenopus neural folds, branchial arches, cardiac outflow tract, inflow tract, and splanchnic mesoderm. Ablation of the premigratory neural crest in Xenopus embryos results in abnormal formation of the heart and a loss of Id2 expression in the heart and splanchnic mesoderm. This data suggests that the presence of neural crest is required for normal Id2 expression in both chick and Xenopus heart development and provides evidence that neural crest is involved in heart development in Xenopus embryos.  相似文献   

13.
Retinoids, and in particular retinoic acid (RA), are known to induce posterior fates in neural tissue. However, alterations in retinoid signalling dramatically affect anterior development. Previous reports have demonstrated a late role for retinoids in patterning craniofacial and forebrain structures, but an earlier role in anterior patterning is not well understood. We show that enzymes involved in synthesizing retinoids are expressed in the avian hypoblast and in tissues directly involved in head patterning, such as anterior definitive endoderm and prechordal mesendoderm. We found that in the vitamin A-deficient (VAD) quail model, which lacks biologically active RA from the first stages of development, anterior endodermal markers such as Bmp2, Bmp7, Hex and the Wnt antagonist crescent are affected during early gastrulation. Furthermore, prechordal mesendodermal and prospective ventral telencephalic markers are expanded posteriorly, Shh expression in the axial mesoderm is reduced, and Bmp2 and Bmp7 are abnormally expressed in the ventral midline of the neural tube. At early somite stages, VAD embryos have increased cell death in ventral neuroectoderm and foregut endoderm, but normal cranial neural crest production, whereas at later stages extensive apoptosis occurs in head mesenchyme and ventral neuroectoderm. As a result, VAD embryos end up with a single and reduced telencephalic vesicle and an abnormally patterned diencephalon. Therefore, we propose that retinoids have a dual role in patterning the anterior forebrain during development. During early gastrulation, RA acts in anterior endodermal cells to modulate the anteroposterior (AP) positional identity of prechordal mesendodermal inductive signals to the overlying neuroectoderm. Later on, at neural pore closure, RA is required for patterning of the mesenchyme of the frontonasal process and the forebrain by modulating signalling molecules involved in craniofacial morphogenesis.  相似文献   

14.
A role for Wnt/β-catenin signaling in axial patterning has been demonstrated in animals as basal as cnidarians, while roles in axial patterning for retinoic acid (RA) probably evolved in the deuterostomes and may be chordate-specific. In vertebrates, these two pathways interact both directly and indirectly. To investigate the evolutionary origins of interactions between these two pathways, we manipulated Wnt/β-catenin and RA signaling in the basal chordate amphioxus during the gastrula stage, which is the RA-sensitive period for anterior/posterior (A/P) patterning. The results show that Wnt/β-catenin and RA signaling have distinctly different roles in patterning the A/P axis of the amphioxus gastrula. Wnt/β-catenin specifies the identity of the ends of the embryo (high Wnt = posterior; low Wnt = anterior) but not intervening positions. Thus, upregulation of Wnt/β-catenin signaling induces ectopic expression of posterior markers at the anterior tip of the embryo. In contrast, RA specifies position along the A/P axis, but not the identity of the ends of the embryo—increased RA signaling strongly affects the domains of Hox expression along the A/P axis but has little or no effect on the expression of either anterior or posterior markers. Although the two pathways may both influence such things as specification of neuronal identity, interactions between them in A/P patterning appear to be minimal.  相似文献   

15.
Targeted inactivation of the mouse retinaldehyde dehydrogenase 2 (RALDH2/ALDH1a2), the enzyme responsible for early embryonic retinoic acid synthesis, is embryonic lethal because of defects in early heart morphogenesis. Transient maternal RA supplementation from E7.5 to (at least) E8.5 rescues most of these defects, but the supplemented Raldh2(-/-) mutants die prenatally, from a lack of septation of the heart outflow tract (Niederreither, K., Vermot, J., Messaddeq, N., Schuhbaur, B., Chambon, P. and Dollé, P. (2001). Development 128, 1019-1031). We have investigated the developmental basis for this defect, and found that the RA-supplemented Raldh2(-/-) embryos exhibit impaired development of their posterior (3rd-6th) branchial arch region. While the development of the first and second arches and their derivatives, as well as the formation of the first branchial pouch, appear to proceed normally, more posterior pharyngeal pouches fail to form and the pharyngeal endoderm develops a rudimentary, pouch-like structure. All derivatives of the posterior branchial arches are affected. These include the aortic arches, pouch-derived organs (thymus, parathyroid gland) and post-otic neural crest cells, which fail to establish segmental migratory pathways and are misrouted caudally. Patterning and axonal outgrowth of the posterior (9th-12th) cranial nerves is also altered. Vagal crest deficiency in Raldh2(-/-) mutants leads to agenesis of the enteric ganglia, a condition reminiscent of human Hirschprung's disease. In addition, we provide evidence that: (i) wildtype Raldh2 expression is restricted to the posteriormost pharyngeal mesoderm; (ii) endogenous RA response occurs in both the pharyngeal endoderm and mesoderm, and extends more rostrally than Raldh2 expression up to the 2nd arch; (iii) RA target genes (Hoxa1, Hoxb1) are downregulated in both the pharyngeal endoderm and mesoderm of mutant embryos. Thus, RALDH2 plays a crucial role in producing RA required for pharyngeal development, and RA is one of the diffusible mesodermal signals that pattern the pharyngeal endoderm.  相似文献   

16.
Much of the heart, including the atria, right ventricle and outflow tract (OFT) is derived from a progenitor cell population termed the second heart field (SHF) that contributes progressively to the embryonic heart during cardiac looping. Several studies have revealed anterior-posterior patterning of the SHF, since the anterior region (anterior heart field) contributes to right ventricular and OFT myocardium whereas the posterior region gives rise to the atria. We have previously shown that Retinoic Acid (RA) signal participates to this patterning. We now show that Hoxb1, Hoxa1, and Hoxa3, as downstream RA targets, are expressed in distinct sub-domains within the SHF. Our genetic lineage tracing analysis revealed that Hoxb1, Hoxa1 and Hoxa3-expressing cardiac progenitor cells contribute to both atria and the inferior wall of the OFT, which subsequently gives rise to myocardium at the base of pulmonary trunk. By contrast to Hoxb1Cre, the contribution of Hoxa1-enhIII-Cre and Hoxa3Cre-labeled cells is restricted to the distal regions of the OFT suggesting that proximo-distal patterning of the OFT is related to SHF sub-domains characterized by combinatorial Hox genes expression. Manipulation of RA signaling pathways showed that RA is required for the correct deployment of Hox-expressing SHF cells. This report provides new insights into the regulatory gene network in SHF cells contributing to the atria and sub-pulmonary myocardium.  相似文献   

17.
18.
Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region.  相似文献   

19.
Axis formation is a key step in development, but studies indicate that genes involved in insect axis formation are relatively fast evolving. Orthodenticle genes have conserved roles, often with hunchback, in maternal anterior patterning in several insect species. We show that two orthodenticle genes, otd1 and otd2, and hunchback act as maternal anterior patterning genes in the honeybee (Apis mellifera) but, unlike other insects, act to pattern the majority of the anteroposterior axis. These genes regulate the expression domains of anterior, central and posterior gap genes and may directly regulate the anterior gap gene giant. We show otd1 and hunchback also influence dorsoventral patterning by regulating zerknült (zen) as they do in Tribolium, but that zen does not regulate the expression of honeybee gap genes. This suggests that interactions between anteroposterior and dorsal-ventral patterning are ancestral in holometabolous insects. Honeybee axis formation, and the function of the conserved anterior patterning gene orthodenticle, displays unique characters that indicate that, even when conserved genes pattern the axis, their regulatory interactions differ within orders of insects, consistent with relatively fast evolution in axis formation pathways.  相似文献   

20.
The linear cardiac tube of Drosophila, the dorsal vessel, is an important model organ for the study of cardiac specification and patterning in vertebrates. In Drosophila, the Hox segmentation gene abdominal-A (abd-A) is required for the specification of a functionally distinct heart region at the posterior of the dorsal vessel, from which blood is pumped anteriorly through a tube termed the aorta. Since we have previously shown that the posterior part of the aorta is specified during embryogenesis to form the adult heart during metamorphosis, we determined if the embryonic aorta is also patterned by the function of Hox segmentation genes. Using gain- and loss-of-function experiments, we demonstrate that the three Hox genes expressed in the posterior aorta and heart are sufficient to confer heart or posterior aorta fate throughout the dorsal vessel. Additionally, we demonstrate that Ultrabithorax and abd-A, but not Antennapedia, function to control cell number in the dorsal vessel. These studies add robustness to the model that homeotic selector genes pattern the Drosophila dorsal vessel, and further extend our understanding of how the cardiac tube is patterned in animal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号