首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Chloroplasts with high rates of photosynthetic O2 evolution (up to 120 mol O2· (mg Chl)-1·h-1 compared with 130 mol O2· (mg Chl)-1·h-1 of whole cells) were isolated from Chlamydomonas reinhardtii cells grown in high and low CO2 concentrations using autolysine-digitonin treatment. At 25° C and pH=7.8, no O2 uptake could be observed in the dark by high- and low-CO2 adapted chloroplasts. Light saturation of photosynthetic net oxygen evolution was reached at 800 mol photons·m-2·s-1 for high- and low-CO2 adapted chloroplasts, a value which was almost identical to that observed for whole cells. Dissolved inorganic carbon (DIC) saturation of photosynthesis was reached between 200–300 M for low-CO2 adapted chloroplasts, whereas high-CO2 adapted chloroplasts were not saturated even at 700 M DIC. The concentrations of DIC required to reach half-saturated rates of net O2 evolution (Km(DIC)) was 31.1 and 156 M DIC for low- and high-CO2 adapted chloroplasts, respectively. These results demonstrate that the CO2 concentration provided during growth influenced the photosynthetic characteristics at the whole cell as well as at the chloroplast level.Abbreviations Chl chlorophyll - DIC dissolved inorganic carbon - Km(DIC) coneentration of dissolved inorganic carbon required for the rate of half maximal net O2 evolution - PFR photon fluence rate - SPGM silicasol-PVP-gradient medium  相似文献   

2.
J. Muñoz  M. J. Merrett 《Planta》1988,175(4):460-464
Air-grown cells of a marine, small-celled (2 m diameter) strain of Stichococcus bacillaris contained appreciable carbonic-anhydrase activity but this was repressed when cells were grown on air enriched with 5% (v/v) CO2. Assay of carbonic-anhydrase activity using intact cells and cell extracts showed all activity was intracellular in this Stichococcus strain. Measurement of inorganic-carbon-dependent photosynthetic O2 evolution at pH 5.0, where CO2 is the predominant form of inorganic carbon, showed that the concentration of inorganic carbon required for half-maximal rate of photosynthetic O2 evolution [K0.5(CO2)] was 4.0 M for both air- and CO2-grown cells. At pH 8.3 the K0.5(CO2) was 0.3 mM for air-grown and 0.6 mM for CO2-grown cells. Sodium ions did not enhance bicarbonate utilization. Measurement of the internal inorganic-carbon pool (HCO 3 +CO2) by the silicone-oil-layer centrifugal filtering technique showed that air- and CO2-grown cells were able to concentrate inorganic carbon up to 20-fold in relation to the external medium at pH 5.0 but not at pH 8.3. In this alga the high affinity for CO2 and inorganic-carbon accumulation in CO2- and air-grown cells results from active CO2 transport that is not dependent on carbonic-anhydrase activity.Abbreviation Hepes 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid  相似文献   

3.
A closed system consisting of an assimilation chamber furnished with a membrane inlet from the liquid phase connected to a mass spectrometer was used to measure O2 evolution and uptake by Chlamydomonas reinhardtii cells grown in ambient (0.034% CO2) or CO2-enriched (5% CO2) air. At pH = 6.9, 28°C and concentrations of dissolved inorganic carbon (DIC) saturating for photosynthesis, O2 uptake in the light (Uo) equaled O2 production (Eo) at the light compensation point (15 micromoles photons per square meter per second). Eo and Uo increased with increasing photon fluence rate (PFR) but were not rate saturated at 600 micromoles photons per square meter per second, while net O2 exchange reached a saturation level near 500 micromoles photons per square meter per second which was nearly the same for both, CO2-grown and air-grown cells. Comparison of the Uo/Eo ratios between air-grown and CO2-grown C. reinhardtii showed higher values for air-grown cells at light intensities higher than light compensation. For both, air-grown and CO2-grown algae the rates of mitochondrial O2 uptake in the dark measured immediately before and 5 minutes after illumination were much lower than Uo at PFR saturating for net photosynthesis. We conclude that noncyclic electron flow from water to NADP+ and pseudocyclic electron flow via photosystem I to O2 both significantly contribute to O2 exchange in the light. In contrast, mitochondrial respiration and photosynthetic carbon oxidation cycle are regarded as minor O2 consuming reactions in the light in both, air-grown and CO2-grown cells. It is suggested that the “extra” O2 uptake by air-grown algae provides ATP required for the energy dependent CO2/HCO3 concentrating mechanism known to be present in these cells.  相似文献   

4.
A. Yokota  S. Kitaoka 《Planta》1987,170(2):181-189
The rate of glycolate excretion in Euglena gracilis Z and some microalgae grown at the atmospheric level of CO2 was determined using amino-oxyacetate (AOA). The extracellular O2 concentration was kept at 240 M by bubbling the incubation medium with air. Glycolate, the main excretion product, was excreted by Euglena at 6 mol·h-1·(mg chlorophyll (Chl))-1. Excretion depended on the presence of AOA, and was saturated at 1 mM AOA. A substituted oxime formed from glyoxylate and AOA was also excreted. Bicarbonate added at 0.1 mM did not prevent the excretion of glycolate. The excretion of glycolate increased with higher O2 concentrations in the medium, and was competitively inhibited by much higher concentrations of bicarbonate. Aminooxyacetate also caused excretion of glycolate from the green algae, Chlorella pyrenoidosa, Scenedesmus obliquus and Chlamydomonas reinhardtii grown on air, at the rates of 2–7 mol·h-1·(mg Chl)-1 in the presence of 0.2–0.6 mM dissolved inorganic carbon, but the cyanobacterium, Anacystis nidulans, grown in the same way did not excrete glycolate. The efficiency of the CO2-concentrating mechanism to suppress glycolate formation is discussed on the basis of the magnitude of glycolate formation in these low-CO2-grown cells.Abbreviations AOA aminooxyacetate - Chl chlorophyll - DIC dissolved inorganic carbon - HPLC high-pressure liquid chromatography - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase This is the 16th paper in a series on the metabolism of glycolate in Euglena gracilis. The 15th paper is Yokota et al. (1985c)  相似文献   

5.
Air-grown cells of Porphyridium purpurem contain appreciable carbonic-anhydrase activity, comparable to that in air-grown Chlamydomonas reinhardtii, but activity is repressed in CO2-grown cells. Assay of carbonic-anhydrase activity in intact cells and cell extracts shows all activity to be intracellular in Porphyridium. Measurement of inorganic-carbon-dependent photosynthetic O2 evolution shows that sodium ions increase the affinity of Porphyridium cells for HCO 3 - . Acetazolamide and ethoxyzolamide were potent inhibitors of carbonic anhydrase in cell extracts but at pH 5.0 both acetazolamide and ethoxyzolamide had little effect upon the concentration of inorganic carbon required for the half-maximal rate of photosynthetic O2 evolution (K0.5[CO2]). At pH 8.0, where HCO 3 - is the predominant species of inorganic carbon, the K0.5 (CO2) was increased from 50 M to 950 M in the presence of ethoxyzolamide. It is concluded that in air-grown cells of Porphyridium. HCO 3 - is transported across the plasmalemma and intracellular carbonic anhydrase increases the steady-state flux of CO2 from inside the plasmalemma to ribulose-1,5-bisphosphate carboxylase-oxygenase by catalysing the interconversion of HCO 3 - and CO2 within the cell.Abbreviations AZ acetazolamide - EZ ethoxyzolamide - K0.5[CO2] half-maximal rate of photosynthetic O2 evolution  相似文献   

6.
B. N. Patel  M. J. Merrett 《Planta》1986,169(1):81-86
The regulation of carbonic anhydrase by environmental conditions was determined forChlamydomonas reinhardtii. The depression of carbonic anhydrase in air-grown cells was pH-dependent. Growth of cells on air at acid pH, corresponding to 10 m CO2 in solution, resulted in complete repression of carbonic-anhydrase activity. At pH 6.9, increasing the CO2 concentration to 0.15% (v/v) in the gas phase, corresponding to 11 M in solution, was sufficient to completely repress carbonic-anhydrase activity. Photosynthesis and intracellular inorganic carbon were measured in air-grown and high-CO2-grown cells using a silicone-oil centrifugation technique. With carbonic anhydrase repressed cells limited inorganic-carbon accumulation resulted from non-specific binding of CO2. With air-grown cells, inorganic-carbon uptake at acid pH, i.e. 5.5, was linear up to 0.5 mM external inorganic-carbon concentration whereas at alkaline pH, i.e. 7.5, the accumulation ratio decreased with increase in external inorganic-carbon concentration. It is suggested that in air-grown cells at acid pH, CO2 is the inorganic carbon species that crosses the plasmalemma. The conversion of CO2 to HCO 3 - by carbonic anhydrase in the cytosol results in inorganic-carbon accumulation and maintains the diffusion gradient for carbon dioxide across the cell boundary. However, this mechanism will not account for energy-dependent accumulation of inorganic carbon when there is little difference in pH between the exterior and cytosol.  相似文献   

7.
A mass spectrometric 16O2/18O2-isotope technique was used to analyse the rates of gross O2 evolution, net O2 evolution and gross O2 uptake in relation to photon fluence rate by Dunaliella tertiolecta adapted to 0.5, 1.0, 1.5, 2.0 and 2.5 M NaCl at 25°C and pH 7.0.At concentrations of dissolved inorganic carbon saturating for photosynthesis (200 M) gross O2 evolution and net O2 evolution increased with increasing salinity as well as with photon fluence rate. Light compensation was also enhanced with increased salinities. Light saturation of net O2 evolution was reached at about 1000 mol m-2s-1 for all salt concentrations tested. Gross O2 uptake in the light was increased in relation to the NaCl concentration but it was decreased with increasing photon fluence rate for almost all salinities, although an enhanced flow of light generated electrons was simultaneously observed. In addition, a comparison between gross O2 uptake at 1000 mol photons m-2s-1, dark respiration before illumination and immediately after darkening of each experiment showed that gross O2 uptake in the light paralleled but was lower than mitochondrial O2 consumption in the dark.From these results it is suggested that O2 uptake by Dunaliella tertiolecta in the light is mainly influenced by mitochondrial O2 uptake. Therefore, it appears that the light dependent inhibition of gross O2 uptake is caused by a reduction in mitochondrial O2 consumption by light.Abbreviations DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - DHAP dihydroxy-acetonephosphate - DIC dissolved inorganic carbon - DRa rate of dark respiration immediately after illumination - DRb rate of dark respiration before illumination - E0 rate of gross oxygen evolution in the light - NET rate of net oxygen evolution in the light - PFR photon fluence rate - RubP rubulose-1,5-bisphosphate - SHAM salicyl hydroxamic acid - U0 rate of gross oxygen uptake in the light  相似文献   

8.
Relative importance of short-term environmental interaction and preconditioning to CO2 exchange response was examined in Fragaria ananasa (strawberry, cv. Quinault). Tests included an orthogonal comparison of 15 to 60-min and 6 to 7-h exposures to different levels of temperature (16 to 32°C), photosynthetically active radiation (PAR, 200 to 800 E m2 s-1), and CO2 (300 to 600 l/l) on successive days of study. Plants were otherwise maintained at 21°C, 300 E m2 s-1 PAR and 300–360 l/l CO2 as standard conditions. Treatment was restricted to the mean interval of 14 h daily illumination and the first 3–4 days of each test week over a 12-week cultivation period. CO2 exchange rates were followed with each step-change in environmental level including ascending/descending temperature/PAR within a test period, initial response at standard conditions on successive days of testing, and measurement at reduced O2. Response generally supported prior concepts of leaf biochemical modeling in identifying CO2 fixation as the major site of environmental influence, while overall patterns of whole plant CO2 exchange suggested additional effects for combined environmental factors and preconditioning. These included a positive interaction between temperature and CO2 concentration on photosynthesis at high irradiance and a greater contribution by dark respiration at lower PAR than previously indicated. The further importance of estimating whole plant CO2 exchange from repetitive tests and measurements was evidenced by a high correlation of response to prior treatment both during the daily test period and on consecutive days of testing.Abbreviations C3 plant a plant in which the product of CO2 fixation is a 3-carbon acid (3-phosphoglyceric acid) - IRGA intra-red gas analyzer - PAR photosynthetically active radiation - RH relative humidity - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase Reference to a company and/or product named by the Department is only for purposes of information and does not imply approval or recommendation of the product to the exclusion of others which may also be suitable.  相似文献   

9.
Intact cells of the unicellular cyanobacterium Synechococcus UTEX 625 degraded exogenously supplied cyanate (as KOCN) to CO2 and NH3 in a light-dependent reaction. NH3 release to the medium was as high as 80 mol(mgChl)-1h-1 and increased 1.7-fold in the presence of methionine sulfoximine, a glutamine synthetase inhibitor. Cyanate also supporte photosynthetic O2 evolution to a maximum rate of 188 mol O2(mgChl)-1h-1 at pH 8 and 30°C. Cyanate decomposition in cell-free extracts, measured by mass spectrometry as 13CO2 production from KO13CN, occurred in the soluble enzyme fraction, but not in the thylakoid/carboxysome fraction, and was enhanced by HCO3 and inhibited by the dianion oxalate. CO2, rather, than HCO3 , was a product of cyanate decomposition. The ability to decompose cyanate was not dependent upon pre-exposure of cells to cyanate to induce activity. The collective results indicate that Synechococcus UTEX 625 possesses a constitutive, cytosolic cyanase (EC 4.3.99.1), similar in mechanism to that found in some species of heterotrophic bacteria. The reaction catalyzed was: OCN+HCO3+2H+2CO2+NH3. In intact cells, the CO2 produced by the action of cyanase on OCN- was either directly fixed by the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, leading to O2 evolution, or leaked into the medium where it was returned to the cell by the active CO2/HCO3 transport systems for fixation. However, leakage of CO2 from air-grown cells was only observed when the active CO2 transport system was inhibited by darkness or the CO2 analogue carbon oxysulfide.Abbreviations BTP bistrispropane - C i inorganic carbon (=CO2+HCO3 -+CO3 2-) - CA carbonic anhydrase - Chl chlorophyll - COS carbon oxysulfide - MSX methionine sulfoximine - PAR photosynthetically active radiation - Rubisco ribulose bisphosphate carboxylase/oxygenase  相似文献   

10.
A technique has been developed for the enzymatic isolation of leaf cells from the Crassulacean acid-metabolism plant Sedum telephium. The cells exhibited high activity in both 14CO2 incorporation (30–70 mol CO2 mg-1 chlorophyll h-1) and O2 evolution in the presence of bicarbonate (60–110 mol O2 mg-1 chlorophyll h-1). Half-maximum saturation of 14CO2 incorporation occurred at a bicarbonate concentration of ca. 2 mM (20 M CO2) at pH 8.4 and 30°C. Two types of light-dependent O2 evolution are reported: O2 evolution in the absence of exogenously supplied bicarbonate (endogenous O2 evolution), and bicarbonate-stimulated O2 evolution. Oxygen evolution in the presence of approximately ambient concentrations of CO2 appeared to be a combination of the endogenous O2 evolution and O2 evolution from fixation of the exogenously supplied CO2.Abbreviations CAM Crassulacean acid metabolism - cirlo chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PEP phosphoenolpyruvate - RuDP ribulose-1,5-diphosphate  相似文献   

11.
Dry weight and Relative Growth Rate of Lemna gibba were significantly increased by CO2 enrichment up to 6000 l CO2 l–1. This high CO2 optimum for growth is probably due to the presence of nonfunctional stomata. The response to high CO2 was less or absent following four days growth in 2% O2. The Leaf Area Ratio decreased in response to CO2 enrichment as a result of an increase in dry weight per frond. Photosynthetic rate was increased by CO2 enrichment up to 1500 l CO2 l–1 during measurement, showing only small increases with further CO2 enrichment up to 5000 l CO2 l–1 at a photon flux density of 210 mol m–2 s–1 and small decreases at 2000 mol m–1 s–1. The actual rate of photosynthesis of those plants cultivated at high CO2 levels, however, was less than the air grown plants. The response of photosynthesis to O2 indicated that the enhancement of growth and photosynthesis by CO2 enrichment was a result of decreased photorespiration. Plants cultivated in low O2 produced abnormal morphological features and after a short time showed a reduction in growth.  相似文献   

12.
Comparative 14CO2 pulse-12CO2 chase studies performed at CO2 compensation ()-versus air-concentrations of CO2 demonstrated a four-to eightfold increase in assimilation of 14CO2 into the C4 acids malate and aspartate by leaves of the C3-C4 intermediate species Panicum milioides Nees ex Trin., P. decipiens Nees ex Trin., Moricandia arvensis (L.) DC., and M. spinosa Pomel at . Specifically, the distribution of 14C in malate and aspartate following a 10-s pulse with 14CO2 increases from 2% to 17% (P. milioides) and 4% to 16% (M. arvensis) when leaves are illuminated at the CO2 compensation concentration (20 l CO2/l, 21% O2) versus air (340 l CO2/l, 21% O2). Chasing recently incorporated 14C for up to 5 min with 12CO2 failed to show any substantial turnover of label in the C4 acids or in carbon-4 of malate. The C4-acid labeling patterns of leaves of the closely related C3 species, P. laxum Sw. and M. moricandioides (Boiss.) Heywood, were found to be relatively unresponsive to changes in pCO2 from air to . These data demonstrate that the C3-C4 intermediate species of Panicum and Moricandia possess an inherently greater capacity for CO2 assimilation via phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) at the CO2 compensation concentration than closely related C3 species. However, even at , CO2 fixation by PEP carboxylase is minor compared to that via ribulosebisphosphate carboxylase (EC 4.1.1.39) and the C3 cycle, and it is, therefore, unlikely to contribute in a major way to the mechanism(s) facilitating reduced photorespiration in the C3-C4 intermediate species of Panicum and Moricandia.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - PEP phosphoenolpyruvate - CO2 compensation concentration - 3PGA 3-phosphoglycerate - SuP sugar monophosphates - SuP2 sugar bisphosphates Published as Paper No. 8249, Journal Series, Nebraska Agricultural Research Division  相似文献   

13.
Summary The isolated retina of the terrestrial crab Ocypode ryderi exhibits a pronounced lactate production in spite of being supplied with sufficient O2 (140 torr). To determine whether this lactate production is caused by hypoxic areas in the tissue or represents aerobic glycolysis, oxygen partial pressure and pH measurements with two-channel glass microelectrodes and additional biochemical analyses were carried out on this organ. Distinct profiles were obtained for O2 partial pressure and pH inside the tissue. At a depth of 200 m different O2 partial pressure levels could be observed depending on the O2 partial pressure in the medium (85 torr at 280 torr and 36 torr at 130 torr, respectively). The extracellular pH displays a similar pattern; it reaches a stable value of 7.15 at 100 m inside the tissue. Lowering bath O2 partial pressure from 280 torr to about 15 torr (hypoxia) induces a decrease of the O2 partial pressure in the tissue with different time-courses for different tissue depths. However, hypoxia did not change the extracellular pH. Addition of antimycin A (100 mol · 1-1) to the medium abolishes the O2 partial pressure gradient and the delayed recovery of the tissue O2 partial pressure after hypoxia. These results and the biochemical data suggest that in the crab retina a high glycolytic activity occurs simultaneously with oxydative carbohydrate degradation (aerobic glycolysis).Abbreviations AEC Atkinson energy charge - DC bioelectric potential - dw dry weight - HEPES N-[2-Hydroxyethyl]piperazine-N-[2-ethanesulphonic acid] - PCO2 carbon dioxide partial pressure - PO2 oxygen partial pressure - P tO2 oxygen partial pressure inside the tissue - P mO2 oxygen partial pressure in the medium - pHt pH inside the tissue - pHm pH in the superfusion medium  相似文献   

14.
The O2 dependence of net H+ efflux of maize coleoptiles has been investigated. Below 100 M O2, H+ efflux in young (1 cm long) coleoptiles is markedly decreased while old (7 cm long) coleoptiles show a decline only at 10 M O2. Old coleoptiles show the same decrease in net H+ efflux as young ones if treated with fusicoccin. The ratio of alteration of CO2 production to the change in net proton efflux is about 1:1 at 40–80 M O2 but not at 10 M O2. An influx can be observed at 10 M O2 in young as well as in old coleoptiles if the H+ concentration is held at values below pH 6.5. Lower O2 concentrations lead to an increase of net H+ efflux, which might be caused by leaching of organic acids resulting from anaerobic processes, but CO2 production is not significantly changed at these values. It is proposed that more than one system is responsible for proton translocation across the plasmalemma. One of the systems has a high sensitivity to reduced O2 concentration which is within the same range as the high Km of the alternative path.Abbreviation FC fusicoccin  相似文献   

15.
G. R. Findenegg 《Planta》1977,135(1):33-38
Excretion and absorption of glycolate by young cells of Scenedesmus obliquus (Turp.) Krüger strain D3 grown synchronously with 2% CO2 was compared after no pretreatment with air (CO2-adapted) or after a 2 h adaptation to normal air (0.03% CO2) (air-adapted). At 21% O2, excretion occurred only from CO2-adapted cells at high pH (pH 8.0). Under conditions where no excretion occurred, external glycolate (0.2 mM) was taken up by both air-and CO2-adapted cells at a much faster rate at pH 5 than at pH 8. The uptake was accompanied by an apparent stoichiometric uptake of H+. CO2-adapted algae exhibited high uptake rates that were even higher in the dark than in the light. Air-adapted algae showed high uptake rates in the light but only minimal uptake in the dark. The uptake rate was decreased to about 1/3 with 5% CO2, except with CO2-adapted cells in the light, in which a slight stimulation occurred. Cl- ions inhibited glycolate uptake by air-adapted cells in the light; conversely, light-stimulated Cl- uptake of these cells was inhibited by glycolate. A hypothesis is discussed according to which the internal pH regulates the uptake and release of Cl-, HCO 3 - , and glycolate.Abbreviations DCMU 3-(3,4 dichlorophenyl)-1, 1-dimethyl urea - FCCP carbonyl cyanide p-trifluoro-methoxyphenylhydrazone - HEPES 2-(4-(2-hydroxyethyl)-piperazinyl) ethanesulfonic acid - HPMS -hydroxypyridinemethanesulfonate - MES 2-morpholinoethanesulfonic acid - PCV packed cell volume  相似文献   

16.
Summary Elodea canadensis grows over a wide range of inorganic carbon, nutrient, and light conditions in lakes and streams. Affinity for HCO 3 - use during photosynthesis ranged from strong to weak in Elodea collected from seven localities with different HCO 3 - and CO2 concentrations. The response to HCO 3 - was also very plastic in plants grown in the laboratory at high HCO 3 - concentrations and CO2 concentrations varying from 14.8 to 2,200 M. Bicarbonate affinity was markedly reduced with increasing CO2 concentrations in the growth medium so that ultimately HCO 3 - use was not detectable. High CO2 concentrations also decreased CO2 affinity and induced high CO2 compensation points (360M CO2) and tenfold higher half-saturation values (800 M CO2).The variable HCO 3 - affinity is probably environmentally based. Elodea is a recently introduced species in Denmark, where it reproduces only vegetatively, leaving little opportunity for genetic variation. More important, local populations in the same water system had different HCO 3 - affinities, and a similar variation was created by exposing one plant collection to different laboratory conditions.Bicarbonate use enabled Elodea to photosynthesize rapidly in waters of high alkalinity and enhanced the carbon-extracting capacity by maintaining photosynthesis above pH 10. On the other hand, use of HCO 3 - represents an investment in transport apparatus and energy which is probably not profitable when CO2 is high and HCO 3 - is low. This explanation is supported by the findings that HCO 3 - affinity was low in field populations where HCO 3 - was low (0.5 and 0.9 m M) or CO2 was locally high, and that HCO 3 - affinity was suppressed in the laboratory by high CO2 concentrations.Abbreviations DIC dissolved inorganic carbon (CO2+ HCO 3 - +CO 3 - ) - CO2 compensation point - K 1/2 apparent halfsaturation constant - PHCO 3 interpolated photosynthesis in pure HCO 3 - and zero CO2 - Pmax photosynthetic rate under carbon and light saturation  相似文献   

17.
I. Nijs  I. Impens  T. Behaeghe 《Planta》1989,177(3):312-320
The relationship between leaf photosynthetic capacity (p n, max), net canopy CO2- and H2O-exchange rate (NCER and E t, respectively) and canopy dry-matter production was examined in Lollium perenne L. cv. Vigor in ambient (363±30 l· l-1) and elevated (631±43 l·l-1) CO2 concentrations. An open system for continuous and simultaneous regulation of atmospheric CO2 concentration and NCER and E t measurement was designed and used over an entire growth cycle to calculate a carbon and a water balance. While NCERmax of full-grown canopies was 49% higher at elevated CO2 level, stimulation of p n, max was only 46% (in spite of a 50% rise in one-sided stomatal resistance for water-vapour diffusion), clearly indicating the effect of a higher leaf-area index under high CO2 (approx. 10% in one growing period examined). A larger amount of CO2-deficient leaves resulted in higher canopy dark-respiration rates and higher canopy light compensation points. The structural component of the high-CO2 effect was therefore a disadvantage at low irradiance, but a far greater benefit at high irradiance. Higher canopy darkrespiration rates under elevated CO2 level and low irradiance during the growing period are the primary causes for the increase in dry-matter production (19%) being much lower than expected merely based on the NCERmax difference. While total water use was the same under high and low CO2 levels, water-use efficiency increased 25% on the canopy level and 87% on a leaf basis. In the course of canopy development, allocation towards the root system became greater, while stimulation of shoot dry-matter accumulation was inversely affected. Over an entire growing season the root/shoot production ratio was 22% higher under high CO2 concentration.Abbreviations and symbols C350 ambient CO2, 363±30 l·l-1 - C600 high CO2, 631±43 l·l-1 - c a atmospheric CO2 level - c i CO2 concentration in the intracellular spaces of the leaf - Et canopy evapotranspiration - I o canopy light compensation point - NCER canopy CO2-exchange rate - p n leaf photosynthetic rate - PPFD photosynthetic photon flux density - r a leaf boundary-layer resistance - RD canopy dark-respiration rate - r s stomatal resistance - WUE water use efficiency  相似文献   

18.
Strawberry (Fragaria ananassaDuch. cv. Fengxiang) plantlets were cultured under two in vitroenvironments for rooting, and then acclimatized under two ex vitroirradiance conditions. At the end of rooting stage plant height, fresh weight and specific leaf area of T1-plants grown under high sucrose concentration (3 sucrose), low photosynthetic photon flux density (30 mol m–2 s–1) and normal CO2 concentration (350–400 l l–1) were significantly higher than those of T2-plantlets grown under low sucrose concentration (0.5), high photosynthetic photon flux density (90 mol m–2 s–1) and elevated CO2 concentration (700–800 l l–1). But T2-plantlets had higher net photosynthetic rate (Pn), effective photochemical quantum yield of PSII (PSII), effective photosynthetic electron transport rate (ETR), photochemical quenching (qP) and ratio of chlorophyll fluorescence yield decrease (Rfd). After transfer, higher irradiance obviously promoted the growth of plantlets and was beneficial for the development of photosynthetic functions during acclimatization. T2-plantlets had higher fresh weight, leaf area, PSII and ETR under higher ex vitroirradiance condition.  相似文献   

19.
Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 L L–1 near the leaf base to below atmospheric (<350 L L–1) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 mol m–2 s–1 and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by 14CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 L L–1 of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L–1 O2 compared to 20 mL L–1 O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue.Abbreviations Ca external CO2 concentration - Ci intercellular CO2 concentration - CO2 compensation concentration - PPFR photosynthetic photon fluence rate  相似文献   

20.
M. R. Davis 《Plant and Soil》1990,126(2):237-246
Concentrations of ions were measured in soil solutions from beech (Nothofagus) forests in remote areas of New Zealand and in solutions from beech (Fagus sylvatica) and Norway spruce (Picea abies) forests in North-East Bavaria, West Germany, to compare the chemistry of soil solutions which are unaffected by acid deposition (New Zealand) with those that are affected (West Germany). In New Zealand, soil solution SO4 2– concentrations ranged between <2 and 58 mol L–1, and NO3 concentrations ranged between <1 and 3 mol L–1. In West Germany, SO4 2– concentrations ranged between 80 and 700 mol L–1, and NO3 concentrations at three of six sites ranged between 39 and 3750 mol L–1, but was not detected at the remaining three sites. At all sites in New Zealand, and at sites where the soil base status was moderately high in West Germany, pH levels increased, and total Al (Alt) and inorganic monomeric Al (Ali) levels decreased rapidly with increasing soil depth. In contrast, at sites on soils of low base status in West Germany, pH levels increased only slightly, and Al levels did not decline with increasing soil depth.Under a high-elevation Norway spruce stand showing severe Mg deficiency and dieback symptoms in West Germany, soil solution Mg2+ levels ranged between 20 and 60 mol L, and were only half those under a healthy stand. Alt and Ali levels were substantially higher the healthy stand than under the unhealthy stand, indicating that Al toxicity was not the main cause of spruce decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号