首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carya illinoinensis (pecan) belongs to the Juglandaceae (walnut family) and is a major economic nut crop in the southern USA. Although evidence suggests that some species in the Juglandaceae are ectomycorrhizal, investigations on their ectomycorrhizal fungal symbionts are quite limited. Here we assessed the ectomycorrhizal fungal diversity in cultivated orchards of C. illinoinensis. Five pecan orchards in southern Georgia, USA, were studied, three of which were known to fruit the native edible truffle species Tuber lyonii. We sequenced rDNA from single ectomycorrhizal root tips sampled from a total of 50 individual trees. Mycorrhizae were identified by ITS and LSU rDNA sequence-based methods. Forty-four distinct ectomycorrhizal taxa were detected. Sequestrate taxa including Tuber and Scleroderma were particularly abundant. The two most abundant sequence types belonged to T. lyonii (17%) and an undescribed Tuber species (~20%). Because of our interest in the ecology of T. lyonii, we also conducted greenhouse studies to determine whether this species would colonize and form ectomycorrhizae on roots of pecan, oak, or pine species endemic to the region. T. lyonii ectomycorrhizae were formed on pecan and oak seedlings, but not pine, when these were inoculated with spores. That oak and pecan seedling roots were receptive to truffle spores indicates that spore slurry inoculation could be a suitable method for commercial use and that, ecologically, T. lyonii may function as a pioneer ectomycorrhizal species for these hosts.  相似文献   

2.
Kovács GM  Jakucs E 《Mycorrhiza》2006,16(8):567-574
In the present study, white truffle ectomycorrhizae (EM) collected in deciduous forests (Populus, Quercus, and Fagus) from Hungary were characterized by morphological–anatomical and molecular methods. Our investigations suggest that the EM of white truffles (e.g., Tuber rapaeodorum, Tuber puberulum, Tuber rufum) are common and abundant members of the forest communities in the area. The ITS sequences of 14 EM specimens and 46 additional fruitbody sequences from the GenBank were clustered into four main groups in phylogenetic analyses. In the ITS-1 region, a characteristic indel pattern was found, which supports the clades. Although our analyses indicate definite genetic distance between the groups of the phylogenetic tree, these clades do not correspond to the traditional taxons identified by fruitbody characteristics. Comparison of the ectomycorrhizae shows that neither is mycorrhizal anatomy a good tool to separate the groups, because the characters (like the epidermoid or angular mantle structure, cell wall thickness, the sape and size of cystidia) are too variable and overlap between the clades. The interspecific similarity, observed both in ectomycorrhizal and fruitbody characters, strengthen the sensu lato morpho-species concept of this group. Our study, which combines comprehensive molecular and anatomical approach to characterize and identify ectomycorrhizae of white truffles from natural samples, stress out the need of the taxonomical revision of this group.  相似文献   

3.
Tuber macrosporum Vittad. is a truffle with superb organoleptic properties, whose cultivation is still in its infancy. For the first time we have aimed to provide information on ectomycorrhizal communities in natural and cultivated T. macrosporum sites. Ectomycorrhizal morphotypes were identified using ITS nrDNA sequencing and sorted into molecular operational taxonomic unit (MOTU). We detected 16 MOTUs in the T. macrosporum cultivated plantation. Ascomycota were the most abundant (86.4 %) with Helvellaceae, Pyronemataceae and Pezizaceae the most common. Twenty-two MOTUs were collected in the natural T. macrosporum site. Basidiomycota morphotypes were plentiful (70.6 %) and Thelephoraceae dominated. Each site had different taxa belowground with only T. macrosporum in common, being more abundant in the natural (18.2 %) than in the cultivated (14.4 %) site. Species richness, Simpson and Shannon diversity indices, taxonomic diversity, distinctness and variation of taxonomic distinctness were lower in the cultivated than in the natural site.  相似文献   

4.
A molecular method for the identification of ectomycorrhizae belonging to five species of white truffle is described. The polymerase chain reaction (PCR) and universal primers were used to amplify internal transcribed spacers and 5.8S rDNA, target sequences present in a high number of copies. The amplified products were digested with restriction enzymes in order to detect interspecific polymorphisms. Species-specific restriction fragment length polymorphism patterns were determined for all five species. The use of PCR in conjunction with restriction enzymes provides a sensitive and efficient tool for use in distinguishing ectomycorrhizal species and monitoring inoculated seedlings or field mycorrhizal populations.  相似文献   

5.
Abstract

Truffles are hypogeous ectomycorrhizal fungi of ecological interest for forestry in soils of the northern hemisphere, and of economical relevance for food markets worldwide. The molecular mechanisms that control truffle body formation are largely unknown, as well as the environmental factors that are likely involved. Among the latter, it has been hypothesized that soil‐borne communities may have an impact on truffle production. To address this question, we investigated bacterial and fungal communities resident in productive versus adjacent non‐productive grounds of the white truffle Tuber magnatum by using PCR‐DGGE. Although bacterial communities were generally highly similar across all samples within the grounds, profiles did cluster according to the productivity of circumscribed niches, and a Moraxella osloensis population appeared to be associated with productive sites. Fungal communities revealed several populations, yet showed no obvious patterns in relation to productivity, although Mortierella and Fusarium oxysporum appeared to be more abundant in the productive area. Our results offer a first glimpse into microbial communities thriving in truffle productive niches, and open the question as to whether microbe‐mediated mechanisms may facilitate/inhibit truffle fruiting‐body production or, vice versa, i.e. whether truffle sporocarps have an impact on the microbes living in the rhizosphere.  相似文献   

6.
Summary Polymorphisms of a ribosomal DNA region (ITS) have been analysed using a specific pair of primers, in order to type fruitbodies and ectomycorrhizae of different truffle species. The identification of ectomycorrhizae was obtained by digestion of the PCR products using restriction enzymes. The results show that the strategy used is both suitable and sensitive to characterize the symbiotic fungi from few mycorrhized root tips.  相似文献   

7.
Yang  Mei  Zou  Jie  Liu  Chengyi  Xiao  Yujun  Zhang  Xiaoping  Yan  Lijuan  Ye  Lei  Tang  Ping  Li  Xiaolin 《Annals of microbiology》2019,69(5):553-565

Here, we investigated the influence of Chinese white truffle (Tuber panzhihuanense) symbioses on the microbial communities associated with Corylus avellana during the early development stage of symbiosis. The microbial communities associated with ectomycorrhizae, and associated with roots without T. panzhihuanense colonization, were determined via high-throughput sequencing of bacterial 16S rRNA genes and fungal ITS genes. Microbial community diversity was higher in the communities associated with the ectomycorrhizae than in the control treatment. Further, bacterial and fungal community structures were different in samples containing T. panzhihuanense in association with C. avellana compared to the control samples. In particular, the bacterial genera Rhizobium, Pedomicrobium, and Herbiconiux were more abundant in the ectomycorrhizae, in addition to the fungal genus Monographella. Moreover, there were clear differences in some physicochemical properties among the rhizosphere soils of the two treatments. Statistical analyses indicated that soil properties including exchangeable magnesium and exchangeable calcium prominently influenced microbial community structure. Lastly, inference of bacterial metabolic functions indicated that sugar and protein metabolism functions were significantly more enriched in the communities associated with the ectomycorrhizae from C. avellana mycorrhized with T. panzhihuanense compared to communities from roots of cultivated C. avellana without T. panzhihuanense. Taken together, these results highlight the interactions among ectomycorrhizal fungi, soil properties, and microbial communities that are associated with host plants and further our understanding of the ecology and cultivation of the economically important T. panzhihuanense truffles.

  相似文献   

8.
Ectomycorrhizal networks may facilitate the establishment and survival of seedlings regenerating under the canopies of tropical forests and are often invoked as a potential contributor to monodominance. We identified ectomycorrhizal fungi in a monodominant Gilbertiodendron dewevrei (Fabaceae) rain forest in Cameroon, using sporocarps and ectomycorrhizae of three age categories (seedlings, intermediate trees, and large trees) and tentatively revealed nutrient transfer through ectomycorrhizal networks by measuring spontaneous isotopic (13C and 15N) abundances in seedlings. Sporocarp surveys revealed fewer ectomycorrhizal fungal taxa (59 species from 1030 sporocarps) than molecular barcoding of ectomycorrhizal roots (75 operational taxonomic units from 828 ectomycorrhizae). Our observations suggest that ectomycorrhizal fungal diversity is similar to that in other mixed tropical forests and provide the first report of the TuberHelvella lineage in a tropical forest. Despite some differences, all age categories of G. dewevrei had overlapping ectomycorrhizal fungal communities, with families belonging to Thelephoraceae, Russulaceae, Sebacinaceae, Boletaceae, and Clavulinaceae. Of the 49 operational taxonomic units shared by the three age categories (65.3% of the ectomycorrhizal fungal community), 19 were the most abundant on root tips of all categories (38.7% of the shared taxa), supporting the likelihood of ectomycorrhizal networks. However, we obtained no evidence for nutrient transfer from trees to seedlings. We discuss the composition of the ectomycorrhizal fungal community among the G. dewevrei age categories and the possible role of common ectomycorrhizal networks in this rain forest.  相似文献   

9.
The diversity below (ectomycorrhizae) and above (vascular flora) ground in brûlés of black truffle production areas have been studied together for the first time, both in plantations and in natural areas, as possible indicators of the microecology of these zones. Studies on the ectomycorrhizal community of mature plantations are scarce. However, monitoring the dynamics of such systems is important to understand the conditions that promote truffle fructification. In the study described here the most frequent ectomycorrhizae are Tuber melanosporum and Quercirrhiza quadratum. In the plantations, Q. quadratum is the most abundant morphotype and in the natural area it is Cenococcum geophilum. The development of truffle ecosystems involves the appearance of competitor species with wide networks of hyphae and rhizomorphs. On the other hand, there are few studies concerning the special composition of the vascular flora growing in brûlés. We identified 199 taxa, most of them Mediterranean or Eurosiberian xerophiles and therophytes. This is consistent with the ecology of truffle production areas (dry, sunny and stony). These plants are heavily influenced by the inhibiting substances produced by the truffle and, as a result, they suffer from inhibited growth and in some cases cannot complete their life cycle.  相似文献   

10.
Pecan (Carya illinoinensis) is an economically important nut tree native to the Mississippi basin and cultivated worldwide. In North America, species of truffles are regularly found fruiting in productive pecan orchards and the truffle genus Tuber appears to be abundant in pecan ectomycorrhizal (EM) communities. As an initial step to determine the feasibility of co-cropping European truffle species with pecan, we evaluated whether mycorrhizae of highly esteemed European truffle species (Tuber aestivum Vittad. T. borchii and T. macrosporum) could be formed on pecan seedlings. Seedlings were inoculated with truffle spores and were grown in a greenhouse for 10?months. Levels of EM colonization were estimated visually and quantified by counting EM tips. Ectomycorrhizae were identified both morphologically and molecularly with species-specific amplification and by sequencing of the ITS region of the nuclear ribosomal DNA (nrDNA). Both T. borchii and T. aestivum spores produced well-formed ectomycorrhizae on pecan seedlings with average root colonization levels of about 62% and 42%, respectively, whereas no ectomycorrhizae of T. macrosporum were formed. The anatomy and morphology of these truffle ectomycorrhizae on pecan was characterized. The co-cropping of T. aestivum and T. borchii may hold promise as an additional stream of revenue to pecan growers, although, further studies are needed to assess whether this symbiosis is maintained after planting in the field and whether truffle production can be supported by this host species.  相似文献   

11.
12.
Tuber ectomycorrhizae in a Tuber magnatum "truffière", located in Central Italy, were studied using molecular methods. Specifically, RFLP-ITS analyses, ITS sequencing and specific probes hybridization were used to identify 335 Tuber-like ectomycorrhizal morphotypes. Molecular identification was possible even when distinct morphological characteristics were lacking. For the first time, T. magnatum ectomycorrhizae and other coexisting Tuber species collected in the field were analysed using molecular tools for unambiguous identification. Although the "truffière" under investigation yields good harvests of T. magnatum fruiting bodies, the percentage of T. magnatum ectomycorrhizae found was very low (less than 4.4% of the 335 root tips analysed), whereas the percentages of Tuber maculatum and Tuber rufum were considerably higher (48.9% and 19.0%, respectively).  相似文献   

13.
No information is presently available on the molecular mechanisms that control the morphogenesis of the truffle, an ectomycorrhizal ascomycetous fungus of great economic interest not only for forestry and agronomy but also for the organoleptic properties of its hypogeous fruitbodies. A Tilia platyphyllos- Tuber borchii model system was used in order to identify genes induced or up-regulated during symbiosis, since their isolation is a prerequisite for the understanding of the molecular bases of mycorrhizal development and regulation. The strategy applied involved the construction of an ectomycorrhizal cDNA library and random selection of clones, followed by a differential screening procedure to analyse cDNA expression in uninfected roots, ectomycorrhizae and free-living mycelia. The results revealed that many genes - and more plant genes than fungal genes - are expressed at higher levels during the symbiotic phase. Several clones were also investigated in order to understand their biological function. This study represents the first attempt to extend our knowledge of the molecular mechanisms underlying the establishment of ectomycorrhiza in Tuber species.  相似文献   

14.
Protozoan communities around roots with different types of ectomycorrhizae were distinct. These protozoan communities differed both qualitatively and quantitatively with the host (Pinus ponderosa, Pseudotsuga menziesii, Picea sitchensis, Tsuga heterophylla and Abies grandis) and the ectomycorrhizal fungal species. Based on the species identified and the numbers of individuals of each species, six communities of protozoa were found associated with specific ectomycorrhizae. Previous researchers have shown that mycorrhizal colonization of roots alters the amounts and types of exudates produced by roots, which in turn alters the bacterial community present. Most likely, mycorrhizal colonization of roots influences the protozoan community around roots by controlling the bacterial community. However, the protozoan community may in turn influence the successional dynamics of ectomycorrhizal fungi on different host root systems by a variety of mechanisms. These mechanisms could include: (1) preying upon individuals and perhaps removing particular species of bacteria from the mycorrhizosphere; and (2) controlling nitrogen mineralization in the rhizosphere. Further work needs to be performed to determine the interaction between these quadrate (plant-bacteria-fungi-protozoa) associations.  相似文献   

15.
Evidence suggests that truffle-like sporocarp forms have evolved many times in the Pezizales, but primarily from epigeous ancestors within ectomycorrhizal clades. There are several ectomycorrhizal clades, however, that contain no known hypogeous species. We collected specimens of an unusual unidentified truffle from mixed oak woodlands in Iowa. Although clearly a member of the Pezizales (Ascomycota), this hypogeous species did not belong to any of the described truffle genera. Based on a combination of ecological, phylogenetic, and morphological evidence we determined that this new truffle is a hypogeous member of the genus Otidea (Pyronemataceae), a lineage with no described truffle species. We describe it here as a new species, Otidea subterranea.  相似文献   

16.
Ectomycorrhizae create a multitrophic ecosystem formed by the association between tree roots, mycelium of the ectomycorrhizal fungus, and a complex microbiome. Despite their importance in the host tree’s physiology and in the functioning of the ectomycorrhizal symbiosis, detailed studies on ectomycorrhiza-associated bacterial community composition and their temporal dynamics are rare. Our objective was to investigate the composition and dynamics of Tuber melanosporum ectomycorrhiza-associated bacterial communities from summer to winter seasons in a Corylus avellana tree plantation. We used 16S ribosomal RNA (rRNA)-based pyrosequencing to compare the bacterial community structure and the richness in T. melanosporum’s ectomycorrhizae with those of the bulk soil. The T. melanosporum ectomycorrhizae harbored distinct bacterial communities from those of the bulk soil, with an enrichment in Alpha- and Gamma-proteobacteria. In contrast to the bacterial communities of truffle ascocarps that vastly varies in composition and richness during the maturation of the fruiting body and to those from the bulk soil, T. melanosporum ectomycorrhiza-associated bacterial community composition stayed rather stable from September to January. Our results fit with a recent finding from the same experimental site at the same period that a continuous supply of carbohydrates and nitrogen occurs from ectomycorrhizae to the fruiting bodies during the maturation of the ascocarps. We propose that this creates a stable niche in the ectomycorrhizosphere although the phenology of the tree changes.  相似文献   

17.
Truffles are edible hypogeous ascomycetes highly appreciated worldwide, especially the black truffle (Tuber melanosporum Vittad.). In recent decades, the cultivation of the black truffle has expanded across the Mediterranean climate regions in and outside its native range. Members of the Thelephoraceae (Thelephorales, Agaricomycetes, Basidiomycota) are commonly found in truffle plantations, but their co-occurrence with Tuber species and other members of the fungal community has been scarcely reported. Thelephoraceae is one of the most represented families of the ectomycorrhizal fungal community in boreal and Mediterranean forests. To reveal the diversity of these fungi in T. melanosporum-cultivated plantations, ten orchards located in the Navarra region (Northern Spain) were surveyed for 2 years. Morphological and molecular approaches were used to detect and identify the Thelephoraceae ectomycorrhizas present in those plantations. Ten different mycorrhizal types were detected and described. Four of them were morphologically identified as Tomentella galzinii, Quercirhiza cumulosa, Q. squamosa, and T39 Thelephoraceae type. Molecular analyses revealed 4–6 operational taxonomic units (OTUs), depending on the nucleotide database used, but similarities remained under 95 % and no clear species assignments could be done. The results confirm the diversity and abundance of this fungal family in the ectomycorrhizal community of black truffle plantations, generally established in Mediterranean areas. The occurrence and relative abundance of Thelephoraceae ectomycorrhizas is discussed in relation to their possible influence on truffle production.  相似文献   

18.
In this study, a sex subtractive genomic DNA library was constructed using suppression subtractive hybridization (SSH) between male and female Cyprinus carpio. Twenty‐two clones with distinguishable hybridization signals were selected and sequenced. The specific primers were designed based on the sequence data. Those primers were then used to amplify the sex‐specific fragments from the genomic DNA of male and female carp. The amplified fragments from two clones showed specificity to males but not to females, which were named as Ccmf2 [387 base pairs (bp)] and Ccmf3 (183 bp), respectively. The sex‐specific pattern was analysed in a total of 40 individuals from three other different C. carpio. stocks and grass carp Ctenopharyngodon idella using Ccmf2 and Ccmf3 as dot‐blotting probes. The results revealed that the molecular diversity exists on the Y chromosome of C. carpio. No hybridization signals, however, were detected from individuals of C. idella, suggesting that the two sequences are specific to C. carpio. No significant homologous sequences of Ccmf2 and Ccmf3 were found in GenBank. Therefore, it was interpreted that the results as that Ccmf2 and Ccmf3 are two novel male‐specific sequences; and both fragments could be used as markers to rapidly and accurately identify the genetic sex of part of C. carpio. This may provide a very efficient selective tool for practically breeding monosex female populations in aquacultural production.  相似文献   

19.
20.
We surveyed ectomycorrhizae, ectomycorrhizal fungal fruit bodies, and soil physical properties in one heavily damaged and two lightly damaged pine stands on Mt. Tsukuba, central Japan. The rate of ectomycorrhizal root tips was not different between heavily and lightly damaged pine stands. For ectomycorrhizae, Cenococcum geophilum had high relative abundance in the heavily damaged pine stand. The number of ectomycorrhizal fungal fruit bodies in the heavily damaged pine stand was much lower than that in the lightly damaged pine stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号