首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pattern of proteins produced by bacteria represents the physiological state of the organism as well as the environmental conditions encountered. Environmental stress induces the expression of several regulons encoding stress proteins. Extensive information about the proteins which constitute these regulons (or stimulons) and their control is available for very few bacteria, such as the Gram-positive Bacillus subtilis and the Gram-negative Escherichia coli (gamma-proteobacteria) and is minimal for all other bacteria. Agrobacterium tumefaciens is a Gram-negative plant pathogen of the alpha-proteobacteria, which constitutes the main tool for plant recombinant genetics. Our previous studies on the control of chaperone-coding operons indicated that A. tumefaciens has unique features and combines regulatory elements from both B. subtilis and E. coli. Therefore, we examined the patterns of proteins induced in A. tumefaciens by environmental changes using two-dimensional gel electrophoresis and dual-channel image analysis. Shifts to high temperature, oxidative and mild acid stresses stimulated the expression of 97 proteins. The results indicate that most of these stress-induced proteins (80/97) were specific to one stress stimulon. Only 10 proteins appear to belong to a general stress regulon.  相似文献   

2.
Vibrio cholerae, a Gram-negative, motile, aquatic bacterium, is the causal agent of the diarrheal disease cholera. Cholera is a serious epidemic disease that has killed millions of people and continues to be a major health problem world-wide. The hypothesis that V. cholerae occupies an ecological niche in the estuarine environment requires that this organism is able to survive the dynamics of physiochemical stresses, including nutrient starvation. As a result of these stresses, bacteria in nature often exist in non-growth or very slow growth states with a low metabolic activity. Because microorganisms have little ability to control their environment, environmental changes have led to changes in cell function and structure. Such cellular responses can originate in one of two ways: by changes in genetic constitution or by phenotypic adaptation. In this review, we will focus on the phenotypic responses of V. cholerae of a given genotype to starvation stress.  相似文献   

3.
Gram-negative and some Gram-positive bacteria that are resistant to bacteriocins of lactic acid bacteria (LAB) were subjected to sublethal stresses and treated with nisin and pediocin AcH. Both bacteriocins reduced the viability of cells surviving sublethal stresses. The results explain the possible mechanisms by which bacteriocins of LAB enter through the walls (or outer membranes) to destabilize the cytoplasmic (or inner) membranes and kill cells of sensitive Gram-positive and resistant, but injured, Gram-negative and Gram-positive bacteria.  相似文献   

4.
5.
醋酸菌多相分类研究进展   总被引:2,自引:0,他引:2  
醋酸菌是一大群革兰氏染色阴性、绝对好氧的细菌的总称, 能将乙醇或糖类不完全氧化为有机酸。醋酸菌的分类在近30年经历了很大变化, 早期的分类系统主要以表型和生化特征为基础。如今, 大多采用结合表型、化学分类法和基因型数据的多相分类法对醋酸菌进行分类。本文综述了醋酸菌的多相分类研究进展, 主要介绍了醋酸菌的现行分类情况及表型分类、化学分类和基因分型等方法在醋酸菌分类中的应用。  相似文献   

6.
Hessle CC  Andersson B  Wold AE 《Cytokine》2005,30(6):311-318
Pro-inflammatory cytokines secreted by tissue macrophages recruit polymorphonuclear leukocytes and evoke fever, cachexia and production of acute phase proteins. This study investigates whether Gram-positive and Gram-negative bacteria equally and efficiently trigger production of the pro-inflammatory cytokines IL-1 beta, IL-6, IL-8 and TNF-alpha in human monocytes. A range of aerobic and anaerobic Gram-positive and Gram-negative bacteria were killed by UV-light and added in different concentrations to human monocytes. Cytokines were measured in 24 h supernatants by ELISA. Gram-positive and Gram-negative bacteria were equally efficient inducers of IL-1 beta, but Gram-positive bacteria generated twice as much TNF-alpha as did Gram-negative bacteria (p<0.001 for 25 and 250 bacteria/cell). In contrast, Gram-negative bacteria induced at least twice as much IL-6 and IL-8 as did Gram-positive bacteria (p<0.001 for 2.5, 25 and 250 bacteria/cell). While the cytokine responses to LPS were similar to those induced by the corresponding amount of Gram-negative bacteria, the strong IL-1 beta and TNF-alpha responses to Gram-positive bacteria could not be induced by soluble peptidoglycan or lipotheicoic acid. The particular nature of the bacteria, thus seem to modify the response to Gram-positive bacterial components. The different cytokine profiles evoked by Gram-positive and Gram-negative bacteria might optimize clearance of bacteria that differ in cell wall structure.  相似文献   

7.
宁夏荒漠草原不同植物群落微斑块内土壤微生物区系特征   总被引:3,自引:0,他引:3  
植物群落斑块化是天然放牧草地最基本的特征之一.为探索植物群落斑块化对土壤微生物群落组成及多样性的影响,本研究以宁夏荒漠草原为研究对象,采用磷脂脂肪酸(PLFA)法对比分析了不同植物群落微斑块内土壤微生物生物量和群落结构特征的变化.结果表明: 1) 4种植物群落微斑块内土壤微生物种类丰富,且都表现为细菌含量最高,真菌和放线菌含量较少,革兰氏阳性菌含量高于革兰氏阴性菌;2)4种植物群落中,甘草微斑块的土壤微生物总量显著高于猪毛蒿、苦豆子和黄芪;3)冗余分析表明,磷脂脂肪酸总量、革兰氏阳性菌、革兰氏阴性菌、真菌、厌氧菌、真菌/细菌均与土壤有机碳呈显著正相关,与pH呈显著负相关,表明土壤有机碳、pH是荒漠草原土壤微生物生长和发育的重要影响因素.  相似文献   

8.
Innate immunity relies on the detection of microbial invaders by two distinct systems. One system comprises a family of membrane-bound receptors, termed the Toll-like receptors, while the other family, termed the nucleotide-binding site/leucine-rich repeat (NBS/LRR) proteins, consists of molecules that are found in the cytoplasmic compartment. These two detection systems recognize conserved molecular components of microbes including such structural motifs as lipopolysaccharide from the Gram-negative bacterial cell wall and peptidoglycan (PGN) found in the cell wall of both Gram-negative and Gram-positive bacteria. This review focuses on two members of the NBS/LRR family of proteins, Nod1 and Nod2. Recently, the microbial motifs sensed by these two molecules have been characterized. Both Nod1 and Nod2 recognize PGN, however, each requires distinct molecular motifs to attain sensing. Nod1 recognizes a naturally occurring muropeptide of PGN that presents a unique amino acid at its terminus called diaminopilemic acid (DAP). This amino acid is found mainly in the PGN of Gram-negative bacteria designating Nodl as a sensor of Gram-negative bacteria. In contrast, Nod2 can detect the minimal bioactive fragment of PGN, called muramyl dipeptide. Thus Nod2 is a general sensor of bacterial PGN. Since mutations in the gene encoding Nod2 were recently shown to be associated with the chronic inflammatory disease, Crohn's disease, these results are discussed in the context of how disrupting the interplay between host detection and bacterial aggression may lead to inflammatory diseases.  相似文献   

9.
miR398在植物逆境胁迫应答中的作用   总被引:5,自引:0,他引:5  
丁艳菲  王光钺  傅亚萍  朱诚 《遗传》2010,32(2):129-134
MicroRNA (miRNA)是一类新型的调控基因表达的小分子RNA, 它作为基因表达的负调控因子, 在转录后水平调节靶基因的表达。miRNA参与调控植物的生长发育, 并在多种非生物与生物胁迫响应中发挥重要作用。miR398是第一个被报道的受氧化胁迫负调控的miRNA。它通过负调控其靶基因Cu/Zn过氧化物歧化酶(Cu/Zn-superoxide dismutase, CSD)的表达, 在多种逆境胁迫响应中扮演重要角色, 如调节铜代谢平衡, 应答重金属、蔗糖、臭氧等非生物胁迫, 以及参与应答生物胁迫等。文章综述了miR398在多种逆境胁迫响应中重要的调节作用及miR398自身的转录调控。  相似文献   

10.
从煤堆废水中分离得到3株嗜温嗜酸硫氧化细菌.这3株菌株为革兰氏阴性、菌体大小0.4~0.7 μm×1~2 μm、短杆状运动细菌,其最适生长温度为 30 ℃和最适生长pH 2.0~2.5.它们能够利用元素硫,硫代硫酸钠和连四硫酸钾为能源进行自养生长,不能利用有机物质以及硫酸亚铁、黄铁矿和黄铜矿等无机物质作为能源生长.细菌的形态、生理生化特性研究以及基于16S rRNA序列同源性构建的系统发育树结果表明,这3株细菌初步鉴定为氧化硫硫杆菌.氧化硫硫杆菌能够通过产酸有效促进黄铜矿的浸出速率和浸出率.  相似文献   

11.
施磷对干旱胁迫下箭竹根际土壤养分及微生物群落的影响   总被引:2,自引:0,他引:2  
以箭竹及其根际土壤作为研究对象,采用两因素随机区组实验,设置2种水分处理(正常浇水和干旱胁迫)和2种施磷量处理(施磷和不施磷),探究施磷对干旱胁迫下箭竹根际土壤养分及微生物群落结构和多样性的影响。结果表明:(1)干旱胁迫显著降低了箭竹根际土壤中微生物量碳、可溶性有机氮和有效磷的含量,虽对箭竹根际土壤微生物群落的多样性无显著影响,但显著降低了箭竹根际土壤中总PLFA(phospholipid fatty acid contents)的含量和真菌、细菌、革兰氏阳性菌与革兰氏阴性菌的PLFA含量以及革兰氏阳性菌/革兰氏阴性菌的PLFA比值,显著改变了箭竹根际土壤微生物群落结构,结果显著降低了箭竹的生物量。(2)施磷显著增加了受旱箭竹根际土壤中微生物量碳和有效磷的含量,虽大体上对受旱箭竹根际土壤微生物群落的多样性无显著影响,但显著增加了受旱箭竹根际土壤中总PLFA和真菌PLFA的含量,并在一定程度上增加了细菌、革兰氏阳性菌、革兰氏阴性菌和放线菌的PLFA含量以及革兰氏阳性菌/革兰氏阴性菌和真菌/细菌的PLFA比值,也在一定程度上改善了受旱箭竹根际土壤微生物群落结构,从而改善受旱箭竹的生长。(3)主成分分析表明,干旱对箭竹根际土壤微生物群落结构的影响显著,而施磷的影响不明显。(4)相关分析发现,箭竹根际土壤微生物群落结构与箭竹根际土壤微生物量碳、可溶性有机氮及箭竹生物量呈显著正相关。综上,干旱降低了箭竹根际土壤养分含量和微生物生物量,改变了箭竹根际土壤微生物群落结构,抑制了箭竹的生长;施磷能增加受旱箭竹根际土壤养分含量和微生物生物量,改善受旱箭竹根际土壤微生物群落结构,进而改善受旱箭竹的生长。  相似文献   

12.
本实验以普通 Webster 大鼠为动物模型,探讨肠道需氧革兰氏阴性杆菌(Gram ne-gative,G~-杆菌)与门静脉血内毒素的关系。以抗生素联合灌胃使大鼠肠道脱污染,降低肠道定植抗力,再以4种需氧 G~-杆菌混合液灌胃,行肠道再污染,然后再分别测定正常鼠(组),脱污染鼠(组)及再污染鼠(组)不同肠段和粪便需氧 G~-杆菌及相应鼠门静脉血内毒素水平。结果表明,肠道需氧 G~-杆菌的变化与相应门静脉血内毒素水平的变化基本一致.由此可见,上消化道需氧 G~-杆菌过生长,可能会成为门静脉血内毒素水平增加的原因之一。  相似文献   

13.
The review deals with lactic acid bacteria in characterizing the stress adaptation with cross-protection effects, mainly associated with Lactobacillus, Bifidobacterium and Lactococcus. It focuses on adaptation and cross-protection in Lactobacillus, Bifidobacterium and Lactococcus, including heat shocking, cold stress, acid stress, osmotic stress, starvation effect, etc. Web of Science, Google Scholar, Science Direct, and PubMed databases were used for the systematic search of literature up to the year 2020. The literature suggests that a lower survival rate during freeze-drying is linked to environmental stress. Protective pretreatment under various mild stresses can be applied to lactic acid bacteria which may enhance resistance in a strain-dependent manner. We investigate the mechanism of damage and adaptation under various stresses including heat, cold, acidic, osmotic, starvation, oxidative and bile stress. Adaptive mechanisms include synthesis of stress-induced proteins, adjusting the composition of cell membrane fatty acids, accumulating compatible substances, etc. Next, we reveal the cross-protective effect of specific stress on the other environmental stresses. Freeze-drying is discussed from three perspectives including the regulation of membrane, accumulation of compatible solutes and the production of chaperones and stress-responsive proteases. The resistance of lactic acid bacteria against technological stress can be enhanced via cross-protection, which improves industrial efficiency concerning the survival of probiotics. However, the adaptive responses and cross-protection are strain-dependent and should be optimized case by case.  相似文献   

14.
Highly antimicrobial active arginine- and tryptophan-rich peptides were synthesized ranging in size from 11 to five amino acid residues in order to elucidate the main structural requirement for such short antimicrobial peptides. The amino acid sequences of the peptides were based on previous studies of longer bovine and murine lactoferricin derivatives. Most of the peptides showed strong inhibitory action against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive bacterium Staphylococcus aureus. For the most active derivatives, the minimal inhibitory concentration values observed for the Gram-negative bacteria were 5 microg/ml (3.5 microM), whereas it was 2.5 microg/ml (1.5 microM) for the Gram-positive bacterium. It was essential for the antimicrobial activity that the peptides contained a minimum of three tryptophan and three arginine residues, and carried a free N-terminal amino group and an amidated C-terminal end. Furthermore, a minimum sequence size of seven amino acid residues was required for a high antimicrobial activity against Pseudomonas aeruginosa. The insertion of additional arginine and tryptophan residues into the peptides resulted only in small variations in the antimicrobial activity, whereas replacement of a tryptophan residue with tyrosine in the hepta- and hexapeptides resulted in reduced antimicrobial activity, especially against the Gram-negative bacteria. The peptides were non-haemolytic, making them highly potent as prospective antibiotic agents.  相似文献   

15.
We have synthesized two cobalt(II) 2 and copper(II) 3 complexes of valine-derived Schiff bases. The obtained complexes were characterized by elemental analysis, FT-IR and X-ray diffraction. Biological studies of complexes 2 and 3 had been carried out in vitro for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi. Compound 3 was proven to be a broad spectrum agent, showed a significant inhibition of the growth of Gram-positive bacteria (Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis, Micrococcus luteus), and pathogenic fungi (Candida spp., Cryptococcus neoformans, Rhodothece glutinis, Saccharomyces cerevisia, Aspergillus spp., Rhizopus nigricans) tested and a moderate activity against Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris and Enterobacter aerogenes) tested. The in vitro cytotoxicity of compound 3 was evaluated using hemolytic assay, in which the compound 3 was found to be non-toxic to human erythrocytes even at a concentration of 500mug/mL.  相似文献   

16.
17.
The MIC of nine different disinfectants and antiseptics were determined for the Gram-negative and Gram-positive bacteria. Strains originated from clinical specimens, drugs and environment. A sensitivity was determined against chlorhexidinum digluconate (Gram-negative: 0,625-80 mg/L, Gram-positive: 0,3-10 mg/L), benzalconium chloride (Gram-negative: 2,5-1280 mg/L, Gram-positive: 1,25-20 mg/L), salicilic acid (Gram-negative and Gram-positive: 400-1600 mg/L), benzoic acid (Gram-negative: 800-1600 mg/L, Gram-positive: 400-1 600 mg/L), boric acid (Gram-negative: 800-12 800 mg/L, Gram-positive: 1 600-6400 mg/L), chloramine B (Gram-negative: 1600-6400 mg/L, Gram-positive:800- 6400 mg/L), jodine (Gram-negative: 200-1600 mg/L, Gram-positive: 200-1600 mg/L), etacridine lactate (Gram-negative: 40 do > 20480 mg/L, Gram-positive: 40-1280 mg/L) and resorcine (Gram-negative: 1600-6400 mg/L, Gram-positive: 800-6400 mg/L). Diversified values of MIC for different strains were obtained, especially in the case of benzalconium chloride, etacridine lactate, chlorhexidinum digluconate, boric acid and iodine. Strains isolated from environment were usually more susceptible to examined compounds than clinical strains. The biggest diversification of sensitivity was observed among strains originated from drugs where besides sensitive appeared strains characterizing by very high MIC values of some substances, eg. boric acid.  相似文献   

18.
Copper is a metallic element that is crucial for cell metabolism; however, in extended concentrations, it is toxic for all living organisms. The dual nature of copper has forced organisms, including bacteria, to keep a tight hold on cellular copper content. This challenge has led to the evolution of complex mechanisms that on one hand enable them to deliver the essential element and on the other to protect cells against its toxicity. Such mechanisms have been found in both eukaryotic and prokaryotic cells. In bacteria a number of different systems such as extra- and intracellular sequestration, enzymatic detoxification, and metal removal from the cell enabling them to survive in the presence of high concentration of copper have been identified. Gram-negative bacteria, due to their additional compartment, need to deal with both cytoplasmic and periplasmic copper. Therefore, these bacteria have evolved intricate and precisely regulated systems which interact with each other. In this review the active mechanisms of copper resistance at their molecular level are discussed.  相似文献   

19.
The lipopolysaccharides (LPS) of Gram-negative bacteria initiate potentially fatal processes in many host organisms. Recently published amino acid sequence data suggest that there is a family of LPS binding proteins that may participate in the host response to Gram-negative bacteremia. The first two members of the family to be identified are an LPS binding protein present in serum after an acute phase response in humans, mice, rabbits, and rats and a bactericidal/permeability increasing protein present in the primary granules of human and rabbit neutrophils. LPS binding protein and bactericidal/permeability increasing protein share an ability to bind to LPS, have homologous NH2-terminal amino acid sequences, and are immunologically cross-reactive. Nevertheless, these two molecules differ in their effects on LPS and Gram-negative bacteria, in their sites of biosynthesis, and localization in vivo.  相似文献   

20.
Eicosapentaenoic acid (EPA) ethyl esters are of interest given their clinical approval for lowering circulating triglycerides and cardiometabolic disease risk. EPA ethyl esters prevent metabolic complications driven by a high fat diet in male mice; however, their impact on female mice is less studied. Herein, we first investigated how EPA influences the metabolic profile of female C57BL/6J mice consuming a high fat diet. EPA lowered murine fat mass accumulation, potentially through increased biosynthesis of 8-hydroxyeicosapentaenoic acid (HEPE), as revealed by mass spectrometry and cell culture studies. EPA also reversed the effects of a high fat diet on circulating levels of insulin, glucose, and select inflammatory/metabolic markers. Next, we studied if the improved metabolic profile of obese mice consuming EPA was associated with a reduction in the abundance of key gut Gram-negative bacteria that contribute toward impaired glucose metabolism. Using fecal 16S-ribosomal RNA gene sequencing, we found EPA restructured the gut microbiota in a time-dependent manner but did not lower the levels of key Gram-negative bacteria. Interestingly, EPA robustly increased the abundance of the Gram-negative Akkermansia muciniphila, which controls glucose homeostasis. Finally, predictive functional profiling of microbial communities revealed EPA-mediated reversal of high fat diet-associated changes in a wide range of genes related to pathways such as Th-17 cell differentiation and PI3K-Akt signaling. Collectively, these results show that EPA ethyl esters prevent some of the deleterious effects of a high fat diet in female mice, which may be mediated mechanistically through 8-HEPE and the upregulation of intestinal Akkermansia muciniphila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号