首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
PTEN抑制胚胎原肠胚形成期EMT的过程   总被引:1,自引:0,他引:1  
Li Y  Wang XY  Wang LJ  Xu T  Lu XY  Cai DQ  Geng JG  Yang XS 《遗传》2011,33(6):613-619
PTEN(Phosphatase and tensin homolog)是一种重要的抑癌基因,具有非常广泛的生物学活性,例如在细胞的生长发育、迁移、凋亡和信号传导等均发挥重要作用。PTEN基因表达始于在胚胎早期的上胚层,而后主要出现在神经外胚层和胚胎中胚层结构,表明PTEN可能参与胚胎早期发育过程的细胞迁移、增殖和分化。文章主要应用在体改变早期胚胎PTEN的表达水平来观察其对上胚层至中胚层细胞转换—EMT(Epithe-lial-mesenchymal transition)的作用。首先,原位杂交结果提示,内源性PTEN表达在原条以及之后的中胚层细胞结构如体节等。在体PTEN转染实验,体外培养至HH3期的鸡胚胎,转染Wt PTEN-GFP或移植Wt PTEN-GFP原条组织至未转染的同时期的宿主胚胎相同部位后,观察到PTEN转染细胞大都由上胚层迁移至原条并滞留于原条,不再参与中胚层细胞形成。移植实验也得到相似结果,发现在Wt PTEN-GFP阳性原条组织移植后很少细胞迁移出原条。另外在原肠胚期PTEN siRNA降调胚胎一侧PTEN基因后,降调侧中胚层细胞数明显少于正常侧。上述研究结果均提示PTEN基因在胚胎原肠胚期三胚层形成过程中可能具有抑制EMT的作用。  相似文献   

2.
神经管闭合缺陷 (NTDs)是一种严重的先天畸形疾病,在新生儿中有千分之一的发病率。神经管融合前后,多种组织参与形态发生运动。神经管一经融合,神经嵴细胞就会向背侧中线方向产生单极突出并向此方向迁移形成神经管的顶部。与此同时,神经管从腹侧开始发生辐射状切入以实现单层化。在此,我们在非洲爪蟾的移植体中机械阻断神经管的闭合以检测其细胞运动及随后的图式形成。结果显示神经管闭合缺陷的移植体不能形成单层化的神经管,并且神经嵴细胞滞留在侧面区域不能向背侧中线迁移,而对神经前体标记基因的检测显示神经管的背腹图式形成并未受到影响。以上结果表明神经管的融合对于辐射状切入和神经嵴细胞向背侧中线方向的迁移过程是必需的,而对于神经管的沿背腹轴方向的图式形成是非必需的。  相似文献   

3.
小鼠心脏神经嵴细胞的体外培养及其生物学特性   总被引:1,自引:0,他引:1  
目的体外培养和鉴定心脏神经嵴细胞,探讨其生物学特性。方法取8·5d小鼠胚胎枕中部至第3体节神经管,组织块法无血清条件培养获心脏神经嵴细胞,采用转录激活因子2α(AP-2α)作为其生物学标记物,观察其迁移、分化等生物学特性。结果从胎鼠神经管中分离培养的细胞AP-2α表达阳性,具有迁移特性,传代后以含血清培养基培养后能自然分化成神经元和神经胶质细胞。结论体外培养可成功获得心脏神经嵴细胞,且具有迁移特性和多向潜能分化能力。  相似文献   

4.
鸡胚早期神经系统发育中凋亡细胞的分布研究   总被引:2,自引:0,他引:2  
研究鸡胚18S(Stage)神经系统发育中凋亡细胞的分布及其生物学意义。采用HNK-1和TUNEL免疫组化双染及改变切片方向的方法观察了神经管和神经嵴的凋亡细胞,结果显示:凋亡的细胞在间隔10张横向切片上呈非均匀分布,但在矢状切面凋亡细胞有节段性分布趋势。体节处连续神经嵴没有发现凋亡细胞,而体节与体节之间神经嵴迁离神经管呈游离状并有凋亡细胞,神经管腹侧面体节处间充质细胞呈现细胞凋亡节段性分布。结果表明:鸡胚早期神经系统发育中选择性发生细胞凋亡作用。  相似文献   

5.
目的:初步分析与小鼠胚胎发育相关的新基因0610038D11Rik表达模式及生物学功能.方法:采用RT-PCR,全胚胎原位杂交和Northern Blotting技术对该基因进行表达谱分析;细胞免疫染色对其进行细胞结构定位.结果:全胚胎原位杂交结果显示0610038D11Rik在胚胎E9.5的端脑、间脑、菱脑和听泡处有较强的信号.随着神经管逐渐关闭,胚胎E10.5在背部神经嵴,神经管区也出现表达信号.E11.5时除了在上述部位表达外,心脏部位也检测到较弱的信号.RT-PCR和Northern Blot实验发现该基因在小鼠胚胎发育直至出生后均有持续性分布,并且在发育中后期的脑、心脏、肺、肾、肝脏,肌肉和舌等多种重要脏器广泛表达.细胞定位表明其主要集中在核内和细胞质中.结论:0610038D11Rik基因在小鼠的脑神经系统和多器官表达,提示该新基因可能在这些组织的发育过程中发挥重要的作用.  相似文献   

6.
目的 探讨Smad2/3a对脊椎动物神经嵴细胞发育的影响。方法 通过在斑马鱼胚胎单细胞时期显微注射smad2/3吗啉环修饰的反义寡核苷酸的方法,特异性敲降smad2/3基因的表达,至胚胎发育至6体节,利用整胚原位杂交检测神经嵴细胞特异性标记基因snail1b,sox10,foxd3和crestin的表达情况;通过casmad2 mRNA和smad3a mRNA显微注射的方法过表达smad2和smad3a,同样利用整胚原位杂交检测神经嵴细胞特异性标记基因crestin的表达情况;通过过表达casmad2及smad3a对下调smad2和smad3a的胚胎进行挽救。结果 smad2/3a被敲低后,crestin的表达量显著降低,而snail1b,sox10和foxd3的表达量无明显变化。smad3b被敲低后,crestin,snail1b,sox10和foxd3的表达量均无明显变化;过表达casmad2和smad3a均可导致crestin的表达量增高;过表达casmad2和smad3a可挽救由于smad2/3a敲降所造成crestin的低表达量。结论 Smad2和Smad3a对神经嵴细胞标记基因crestin的表达具有重要作用。  相似文献   

7.
抑癌基因PTEN编码产物具有双专一性磷酸酶活性 ,并与细胞骨架张力蛋白同源。PTEN可参与粘着斑的形成和解聚而影响细胞迁移。现用PTEN表达质粒转染SMMC 772 1肝癌细胞 ,研究SMMC 772 1细胞运动能力的变化及PTEN与粘着斑激酶 (FAK)酪氨酸磷酸化水平之间的关系。PTEN过表达能够显著抑制细胞在Fn基质上的活动 :细胞在Fn基质上的迁移下降了 35 % ;在 30min和 6 0min两个时间点 ,Fn基质上细胞铺展分别降低了 2 9%和 2 6 % ;而在多聚赖氨酸基质上细胞铺展并没有变化。运用免疫沉淀和Western印迹方法 ,分析FAK及其酪氨酸磷酸化水平 ,发现PTEN过表达不影响FAK表达 ,但显著降低Fn诱导的FAK酪氨酸磷酸化水平 ,两者水平呈负相关。流式细胞仪分析细胞周期结果表明 ,PTEN抑制细胞 ,S期细胞下降了 16 %。上述结果提示 ,PTEN抑制肝癌细胞迁移铺展和增殖 ;PTEN对细胞运动的影响可能通过调节FAK酪氨酸磷酸化水平而实现。  相似文献   

8.
马向东  马兴  吴小明  陈必良  王德堂 《遗传》2009,31(3):280-284
通过构建妊娠合并糖尿病诱发先天性神经管缺陷的SD大鼠模型, 与胚胎不伴有先天性神经管缺陷组大鼠和正常对照组大鼠胚胎进行研究, 提取卵黄囊细胞的mRNA, cDNA 基因芯片技术对表达差异基因进行检测, 应用特异性抗磷酸化抗体进行免疫共沉淀及Western blotting, 对卵黄囊细胞MAP Kinase信号途径蛋白激酶活性进行分析。在神经管缺陷大鼠胚胎卵黄囊细胞和对照组1 200个基因中, 共筛选出表达差异基因79个, 其中42个基因表达上调、37个基因表达下调。同时发现神经管缺陷胚胎卵黄囊细胞出现细胞凋亡特征性的DNA ladder(梯状电泳), 凋亡相关基因 caspase-3、Bax 高表达, 凋亡抑制基因 AKT活性明显受抑; 与正常对照组相比ERK1/2蛋白激酶活性显著下降、JNK1/2活性明显升高。因此, 认为妊娠合并糖尿病诱发胚胎先天性神经管缺陷的发生存在多种差异基因表达, 以及MAP Kinase、凋亡信号传导机制的共同作用。  相似文献   

9.
Liu JT  Yang Y  Guo XG  Chen M  Ding HZ  Chen YL  Wang MR 《动物学研究》2011,32(5):485-491
越来越多的证据表明转录激活因子4(atf4)是一个与胚胎发育相关的基因.该文研究了非洲爪蛙atf4在胚胎发育过程中的表达和功能.atf4特异性地表达在非洲爪蛙胚胎的脑部、眼睛、血岛、原肾、肝脏、胰腺以及胃和十二指肠的部分细胞.在非洲爪蛙胚胎的动物极半球过表达适量(不影响胚胎整体形态发生的剂量)的atf4,对神经上皮细胞中sox3的表达无明显影响,也不引起细胞凋亡;但是对原始神经元的标记基因以及预定形成前脑、中脑、视网膜和晶状体的前体细胞的标记基因表达都有不同程度的抑制,最终导致无晶状体小眼的表型.该研究结果首次提示对正常的早期神经发育及眼睛形成而言,atf4的活性需受到严格的调控.  相似文献   

10.
鸡胚是发育生物学研究的经典动物模型,通过基因导入技术调节胚胎发育的基因功能,研究鸡胚早期发育过程中的细胞迁移,有助于更好地诠释相关先天性疾病的发生发展过程。在早期胚胎发育的过程中,原肠胚期三胚层的形成、心管的发生及神经嵴的发育都伴随着显著的细胞迁移过程。该文将结合近年来国内外对该过程的研究进展,介绍这三个不同时期细胞的迁移及相关基因调控。  相似文献   

11.
Mesenchymal cell migration and neurite outgrowth are mediated in part by binding of cell surface beta 1,4-galactosyltransferase (GalTase) to N-linked oligosaccharides within the E8 domain of laminin. In this study, we determined whether cell surface GalTase functions during neural crest cell migration and neural development in vivo using antibodies raised against affinity-purified chicken serum GalTase. The antibodies specifically recognized two embryonic proteins of 77 and 67 kD, both of which express GalTase activity. The antibodies also immunoprecipitated and inhibited chick embryo GalTase activity, and inhibited neural crest cell migration on laminin matrices in vitro. Anti-GalTase antibodies were microinjected into the head mesenchyme of stage 7-9 chick embryos or cranial to Henson's node of stage 6 embryos. Anti-avian GalTase IgG decreased cranial neural crest cell migration on the injected side but did not cross the embryonic midline and did not affect neural crest cell migration on the uninjected side. Anti-avian GalTase Fab crossed the embryonic midline and perturbed cranial neural crest cell migration throughout the head. Neural fold elevation and neural tube closure were also disrupted by Fab fragments. Cell surface GalTase was localized to migrating neural crest cells and to the basal surfaces of neural epithelia by indirect immunofluorescence, whereas GalTase was undetectable on neural crest cells prior to migration. These results suggest that, during early embryogenesis, cell surface GalTase participates during neural crest cell migration, perhaps by interacting with laminin, a major component of the basal lamina. Cell surface GalTase also appears to play a role in neural tube formation, possibly by mediating neural epithelial adhesion to the underlying basal lamina.  相似文献   

12.
Collapsin-1 belongs to the Semaphorin family of molecules, several members of which have been implicated in the co-ordination of axon growth and guidance. Collapsin-1 can function as a selective chemorepellent for sensory neurons, however, its early expression within the somites and the cranial neural tube (Shepherd, I., Luo, Y. , Raper, J. A. and Chang, S. (1996) Dev. Biol. 173, 185-199) suggest that it might contribute to the control of additional developmental processes in the chick. We now report a detailed study on the expression of collapsin-1 as well as on the distribution of collapsin-1-binding sites in regions where neural crest cell migration occurs. collapsin-1 expression is detected in regions bordering neural crest migration pathways in both the trunk and hindbrain regions and a receptor for collapsin-1, neuropilin-1, is expressed by migrating crest cells derived from both regions. When added to crest cells in vitro, a collapsin-1-Fc chimeric protein induces morphological changes similar to those seen in neuronal growth cones. In order to test the function of collapsin-1 on the migration of neural crest cells, an in vitro assay was used in which collapsin-1-Fc was immobilised in alternating stripes consisting of collapsin-Fc/fibronectin versus fibronectin alone. Explanted neural crest cells derived from both trunk and hindbrain regions avoided the collapsin-Fc-containing substratum. These results suggest that collapsin-1 signalling can contribute to the patterning of neural crest cell migration in the developing chick.  相似文献   

13.
Parrots have developed unique jaw muscles in their evolutionary history. The M. pseudomasseter, which completely covers the lateral side of the jugal bar, is regarded as a jaw muscle unique to parrots. In a previous study, I presented a hypothesis on the relevance of modifications in the regulation of cranial neural crest cell (NCC) development to the generation of this novel jaw muscle based on histological analyses (Tokita [2004] J Morphol 259:69-81). In the present study, I investigated distribution and migration patterns of cranial neural crest cells (NCCs) through parrot embryogenesis with immunohistochemical techniques to further understand the role of cranial NCCs in the evolution of the M. pseudomasseter, and to provide new information on the relative plasticity in cranial NCC migration at early stages of avian development. The basic nature of cranial NCC development was mostly conserved between chick and parrot. In both, cranial NCCs migrated from the dorsal tip of the neural tube in a ventral direction. Three major populations were identified in their cranial NCCs. Migration pathways of these cells were almost identical between chick and parrot. The principal difference was seen in the relative timing of cranial NCC migration. In the parrot, cranial NCC migration into the first pharyngeal arch was more advanced than in the chick at early stages of development. Such a temporal shift in cranial NCC migration might influence architectural patterning of parrot jaw muscles that generates new muscle like M. pseudomasseter.  相似文献   

14.
An increasing number of genes are known to show expression in the cranial neural crest area. So far it is very difficult to analyze their effect on neural crest cell migration because of the lack of transplantation techniques. This paper presents a simple method to study the migratory behavior of cranial neural crest cells by homo- and heterotopic transplantations: Green fluorescent protein (GFP) RNA was injected into one blastomere of Xenopus laevis embryos at the 2-cell stage. The cranial neural crest area of stage 14 embryos was transplanted into the head or trunk region of an uninjected host embryo, and the migration was monitored by GFP fluorescence. The transplants were further examined by double immunostaining and confocal microscopy to trace migratory routes inside the embryo, and to exclude contaminations of grafts with foreign tissues. Our results demonstrate that we developed a highly efficient and reproducible technique to study the migratory ability of cranial neural crest cells. It offers the possibility to analyze genes involved in neural crest cell migration by coinjecting their RNA with that of GFP. Received: 28 September 1999 / Accepted: 17 November 1999  相似文献   

15.
The neural crest is a transient population of migratory cells that differentiates to form a variety of cell types in the vertebrate embryo, including melanocytes, the craniofacial skeleton, and portions of the peripheral nervous system. These cells initially exist as adherent epithelial cells in the dorsal aspect of the neural tube and only later become migratory after an epithelial-to-mesenchymal transition (EMT). Snail2 plays a critical role in mediating chick neural crest cell EMT and migration due to its expression by both premigratory and migratory cranial neural crest cells and its ability to down-regulate intercellular junctions components. In an attempt to delineate the role of cellular junction components in the neural crest, we have identified the adherens junction molecule neural alpha-catenin (αN-catenin) as a Snail2 target gene whose repression is critical for chick neural crest cell migration. Knock-down and overexpression of αN-catenin enhances and inhibits neural crest cell migration, respectively. Furthermore, our results reveal that αN-catenin regulates the appropriate movement of neural crest cells away from the neural tube into the embryo. Collectively, our data point to a novel function of an adherens junction protein in facilitating the proper migration of neural crest cells during the development of the vertebrate embryo.  相似文献   

16.
The neural crest is a multipotent population of migratory cells that arises in the central nervous system and subsequently migrates along defined stereotypic pathways. In the present work, we analyzed the role of a repulsive axon guidance protein, draxin, in the migration of neural crest cells. Draxin is expressed in the roof plate of the chick trunk spinal cord and around the early migration pathway of neural crest cells. Draxin modulates chick neural crest cell migration in vitro by reducing the polarization of these cells. When exposed to draxin, the velocity of migrating neural crest cells was reduced, and the cells changed direction so frequently that the net migration distance was also reduced. Overexpression of draxin also caused some early migrating neural crest cells to change direction to the dorsolateral pathway in the chick trunk region, presumably due to draxin’s inhibitory activity. These results demonstrate that draxin, an axon guidance protein, can also affect trunk neural crest migration in the chick embryo.  相似文献   

17.
Members of the plexin protein family are known regulators of axon guidance, but recent data indicate that they have broader functions in the regulation of embryonic morphogenesis. Here we provide further evidence of this by showing that PlexinA1 is expressed in Xenopus neural crest cells and is required for their migration. PlexinA1 expression is detected in migrating cranial neural crest cells and knockdown of PlexinA1 expression using Morpholino oligonucleotides inhibits neural crest migration. PlexinA1 likely affects neural crest migration by interaction with PTK7, a regulator of planar cell polarity that is required for neural crest migration. PlexinA1 and PTK7 interact in immunoprecipitation assays and show phenotypic interaction in co-injection experiments. Considering that plexins and PTK7 have been shown to genetically interact in Drosophila axon guidance and chick cardiac morphogenesis, our data suggest that this interaction is evolutionary conserved and may be relevant for a broad range of morphogenetic events including the migration of neural crest cells in Xenopus laevis.  相似文献   

18.
Key roles for fibronectin and its integrin receptors have been postulated in the multiple cell-matrix interactions essential for chick embryo morphogenesis. However, mechanistic studies of these processes have been hampered by the current absence of sequence data and chicken cDNA clones for the major fibronectin receptor subunit, integrin α5 (ITGA5). We report here the sequence, endogenous expression pattern, and transfection of full-length chicken integrin α5. During early chicken embryonic development, α5 is highly expressed in cranial neural folds and migrating neural crest cells, suggesting potential roles in neural crest formation and migration. In fact, over-expression of this integrin in early neural tube selectively induces BMP5, a growth factor recently implicated in neural crest formation. Availability of these α5 integrin tools should facilitate studies of its functions in early embryonic development.  相似文献   

19.
Summary Immunoperoxidase labelling for fibronectin (FN) in chick embryos showed FN-positive basement membranes surrounding the neural crest cell population prior to crest-cell migration. At cranial levels, crest cells migrated laterally into a large cell-free space. Initially they moved as a tongue of cells contacting the FN-positive basement membrane of the ectoderm, but later the crest cell population expanded into space further from the ectoderm, until eventually the entire cranial cell-free space was occupied by mesenchyme cells. This was accompanied by the appearance of FN among the crest cells. At trunk levels, crest cells entered a relatively small space already containing FN-positive extracellular material. At later stages the migration of trunk crest cells broadly matched the distribution of FN. In vitro, chick and quail embryo ectoderm, endoderm, somites, notochord and neural tube synthesized and organized fibrous FN-matrices, as shown by immunofluorescence. Ectoderm and endoderm deposited this matrix only on the substrate face. The FN content of endoderm and neural tube matrices was transient, the immunofluorescence intensity declining after 1–2 days in culture. Some crest cells of cranial and sacral axial levels synthesized FN. Our data suggests that these were the earliest crest cells to migrate from these levels. This ability may be the first expression of mesenchymal differentiation in these crest cells, and in vivo enable them to occupy a large space. Almost all crest cells from cervico-lumbar axial levels were unable to synthesize FN. In vivo, this inability may magnify the response of these crest cells to FN provided by the neighbouring embryonic tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号