首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
2.
The mucosal immune system – consisting of adaptive and innate immune cells as well as the epithelium – is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to non-pathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility.  相似文献   

3.
4.
5.
Humans and many other hosts establish a diverse community of beneficial microbes anew each generation. The order and identity of incoming symbionts is critical for health, but what determines the success of the assembly process remains poorly understood. Here we develop ecological theory to identify factors important for microbial community assembly. Our method maps out all feasible pathways for the assembly of a given microbiome—with analogies to the mutational maps underlying fitness landscapes in evolutionary biology. Building these “assembly maps” reveals a tradeoff at the heart of the assembly process. Ecological dependencies between members of the microbiota make assembly predictable—and can provide metabolic benefits to the host—but these dependencies may also create barriers to assembly. This effect occurs because interdependent species can fail to establish when each relies on the other to colonize first. We support our predictions with published data from the assembly of the preterm infant microbiota, where we find that ecological dependence is associated with a predictable order of arrival. Our models also suggest that hosts can overcome barriers to assembly via mechanisms that either promote the uptake of multiple symbiont species in one step or feed early colonizers. This predicted importance of host feeding is supported by published data on the impacts of breast milk in the assembly of the human microbiome. We conclude that both microbe to microbe and host to microbe interactions are important for the trajectory of microbiome assembly.

Humans and many other hosts establish a diverse community of beneficial microbes anew each generation, but what determines the success of the assembly process remains poorly understood. This study develops ecological theory that reveals the rules underlying the assembly of such host-associated microbiota.  相似文献   

6.
7.
Plant roots interact with an enormous diversity of commensal, mutualistic, and pathogenic microbes, which poses a big challenge to roots to distinguish beneficial microbes from harmful ones. Plants can effectively ward off pathogens following immune recognition of conserved microbe‐associated molecular patterns (MAMPs). However, such immune elicitors are essentially not different from those of neutral and beneficial microbes that are abundantly present in the root microbiome. Recent studies indicate that the plant immune system plays an active role in influencing rhizosphere microbiome composition. Moreover, it has become increasingly clear that root‐invading beneficial microbes, including rhizobia and arbuscular mycorrhiza, evade or suppress host immunity to establish a mutualistic relationship with their host. Evidence is accumulating that many free‐living rhizosphere microbiota members can suppress root immune responses, highlighting root immune suppression as an important function of the root microbiome. Thus, the gate keeping functions of the plant immune system are not restricted to warding off root‐invading pathogens but also extend to rhizosphere microbiota, likely to promote colonization by beneficial microbes and prevent growth‐defense tradeoffs triggered by the MAMP‐rich rhizosphere environment.  相似文献   

8.
9.
肠道上皮是肠上皮细胞及其分泌物有机构成的黏膜界面。随着技术的进步和对肠道菌群作用的逐渐重视,研究者对肠道上皮与肠道微生物相互作用的认识也不断深入。研究表明,肠道上皮调节并维持肠道微生物的定殖与分布,肠道微生物也影响肠道上皮的多种屏障功能,二者通过一系列细胞分子机制紧密联系,共同维持肠道稳态。此外,其过程中产生的宿主-肠道菌群共代谢物被发现可以反映宿主的生理病理状态,作为指标被应用于临床疾病诊断、治疗效果评估和预后推测。本文基于近年的研究,综述了肠道上皮与肠道微生物的相互作用及其细胞分子机制,为进一步研究和临床应用总结了理论基础,并探讨了未来可能的研究方向。  相似文献   

10.
Among the seven serotypes (A–G), type A botulinum neurotoxin (BoNT/A) is the most prevalent etiologic agent and the most potent serotype to cause foodborne botulism, characterized by flaccid muscle paralysis. Upon ingestion, BoNT/A crosses epithelial cell barriers to reach lymphatic and circulatory systems and blocks acetylcholine release at the pre-synaptic cholinergic nerve terminals of neuromuscular junctions (NMJs) resulting in paralysis. One of the unique features of BoNT/A intoxication is its neuroparalytic longevity due to its persistent catalytic activity. The persistent presence of the toxin inside the cell can induce host cell responses. To understand the pathophysiology and host response at the cellular level, gene expression changes upon exposure of human HT-29 colon carcinoma (epithelial) and SH-SY5Y neuroblastoma cell lines to BoNT/A complex were investigated using microarray analysis. In HT-29 cells, 167 genes were up-regulated while 60 genes were down-regulated, whereas in SH-SY5Y cells about 223 genes were up-regulated and 18 genes were down-regulated. Modulation of genes and pathways involved in neuroinflammatory, ubiquitin–proteasome degradation, phosphatidylinositol, calcium signaling in SH-SY5Y cells, and genes relevant to focal adhesion, cell adhesion molecules, adherens and gap junction related pathways in HT-29 cells suggest a massive host response to BoNT/A. A clear differential response in epithelial and neuronal cells indicates that the genes affected may play a distinct role in BoNTs cellular mode of action, involving these two types of host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号