首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rheumatoid arthritis (RA) is an autoimmune disorder with a number of risk factors, including both genetic and environmental. A number of RA risk associated genomic loci has been identified. In this review, we summarize the association of genetic factors with RA reported in population studies in Iran. No significant association was found between the majority of genetic factors identified in other populations and risk for RA in the Iranian subjects. This conflicting result could be due to the ethnic differences and diversity that are present in Iran. We conclude that there is a need to investigate larger groups of Iranian subjects, encompassing different regions of Iran, to either prove or refute these initial findings.  相似文献   

2.
Rheumatoid arthritis (RA) is a chronic debilitating disease of the joints. Both the innate and adaptive immune responses participate in the development and progression of RA. While several therapeutic reagents, such as TNF-α agonists, have been successfully developed for the clinical use in the treatment of RA, more than half of the patients do not respond to anti-TNF therapy. Therefore, new therapeutic reagents are needed. Recent studies have shown that sirtuin 1 (Sirt1), a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, is a critical negative regulator of both the innate and adaptive immune response in mice, and its altered functions are likely to be involved in autoimmune diseases. Small molecules that modulate Sirt1 functions are potential therapeutic reagents for autoimmune inflammatory diseases. This review highlights the role of Sirt1 in immune regulation and RA.  相似文献   

3.
The interplay between the immune response and the gut microbiota is complex. Although it is well-established that the gut microbiota is essential for the proper development of the immune system, recent evidence indicates that the cells of the immune system also influence the composition of the gut microbiota. This interaction can have important consequences for the development of inflammatory diseases, including autoimmune diseases and allergy, and the specific mechanisms by which the gut commensals drive the development of different types of immune responses are beginning to be understood. Furthermore, sex hormones are now thought to play a novel role in this complex relationship, and collaborate with both the gut microbiota and immune system to influence the development of autoimmune disease. In this review, we will focus on recent studies that have transformed our understanding of the importance of the gut microbiota in inflammatory responses.  相似文献   

4.
Rheumatoid arthritis (RA) is known as one of important autoimmune disorders which can lead to joint pain and damage throughout body. Given that internal (ie, genetic and epigenetic alterations) and external factors (ie, lifestyle changes, age, hormones, smoking, stress, and obesity) involved in RA pathogenesis. Increasing evidence indicated that cellular and molecular alterations play critical roles in the initiation and progression of RA. Among various targets and molecular signaling pathways, microRNAs (miRNAs) and their regulatory networks have key roles in the RA pathogenesis. It has been showed that deregulation of many miRNAs involved in different stages of RA. Hence, identification of miRNAs and their signaling pathways in RA, could contribute to new knowledge which help to better treatment of patients with RA. Besides miRNAs, exosomes have been emerged as key messengers in RA pathogenesis. Exsosomes are nanocarriers which could be released from various cells and lead to changing of behaviors recipient cells via targeting their cargos (eg, proteins, messenger RNAs, miRNAs, long noncoding RNAs, DNAs). Here, we summarized several miRNAs involved in RA pathogenesis. Moreover, we highlighted the roles of exosomes in RA pathogenesis.  相似文献   

5.
In type 1 diabetes, insulin-producing beta-cells in the pancreas are destroyed by immune-mediated mechanisms. The manifestation of the disease is preceded by the so-called pre-diabetic period that may last several years and is characterized by the appearance of circulating autoantibodies against beta-cell antigens. The role of the gut as a regulator of type 1 diabetes was suggested in animal studies, in which changes affecting the gut immune system modulated the incidence of diabetes. Dietary interventions, alterations in the intestinal microbiota and exposure to enteric pathogens, regulate the development of autoimmune diabetes in animal models. It has been demonstrated that these modulations affect the gut barrier mechanisms and intestinal immunity. Because the pancreas and the gut belong to the same intestinal immune system, the link between autoimmune diabetes and the gut is not unexpected. The gut hypothesis in the development of type 1 diabetes is also supported by the observations made in human type 1 diabetes. Early diet could modulate the development of beta-cell autoimmunity; weaning to hydrolysed casein formula decreased the risk of beta-cell autoimmunity by age 10 in the infants at genetic risk. Increased gut permeability, intestinal inflammation with impaired regulatory mechanisms and dysregulated oral tolerance have been observed in children with type 1 diabetes. The factors that contribute to these intestinal alterations are not known, but interest is focused on the microbial stimuli and function of innate immunity. It is likely that our microbial environment does not support the healthy maturation of the gut and tolerance in the gut, and this leads to the increasing type 1 diabetes as well as other immune-mediated diseases regulated by intestinal immune system. Thus, the interventions, aiming to prevent or treat type 1 diabetes in humans, should be targeting the gut immune system.  相似文献   

6.
Despite the fact that target antigens and the genetic basis of several autoimmune diseases are now better understood, the initial events leading to a loss of tolerance towards self-components remain unknown. One of the most attractive explanations for autoimmune phenomena involves various infections as possible natural events capable of initiating the process in genetically predisposed individuals. The most accepted explanation of how infection causes autoimmunity is based on the concept of “molecular mimicry” (similarity between the epitopes of an autoantigen and the epitopes in the environmental antigen). Infectious stimuli may also participate in the development of autoimmunity by inducing an increased expression of stress proteins (hsp), chaperones and transplantation antigens, which leads to abnormal processing and presentation of self antigens. Superantigens are considered to be one of the most effective bacterial components to induce inflammatory reactions and to take part in the development and course of autoimmune mechanisms. It has long been known that defects in the host defense mechanism render the individual susceptible to infections caused by certain microorganisms. Impaired exclusion of microbial antigens can lead to chronic immunological activation which can affect the tolerance to self components. Defects in certain components of the immune system are associated with a higher risk of a development of autoimmune disease. The use of animal models for the studies of human diseases with immunological pathogenesis has provided new insights into the influence of immunoregulatory factors and the lymphocyte subsets involved in the development of disease. One of the most striking conclusion arising from work with, genetically engineered immunodeficient mouse models is the existence of a high level of redundancy of the components of the immune system. However, when genes encoding molecules involved in T cell immunoregulatory functions are deleted, spontaneous chronic inflammation of the gut mucosa (similar to human inflammatory bowel disease) develops. Surprisingly, when such immunocompromised animals were placed into germfree environment, intestinal inflammation did not develop. Impairment of the mucosal immune response to the normal bacterial flora has been proposed to play a crucial role in the pathogenesis of chronic intestinal inflammation. The use of immunodeficient models colonized with defined microflora for the analysis of immune reactivity will shed light on the mode of action of different immunologically important molecules responsible for the delicate balance between luminal commensals, nonspecific and specific components of the mucosal immune system.  相似文献   

7.
Primary biliary cirrhosis (PBC) is an autoimmune liver disease with profound changes in different compartments of the immune system, including those involved in innate, and adaptive immunity. New data from epidemiological studies of PBC have reinforced the thesis that the cause for this relatively uncommon disease is likely to be a combination of both environmental factors and a susceptible genetic predisposition. Recent findings of abnormalities of the innate immune system in PBC suggest that they may serve as links between the environmental factors and the early events in PBC development. Viral and bacterial infections as well as xenobiotics are some of the potential environmental factors that have been implicated in this complex process. Identification of the etiological factors for PBC will point to new preventive or therapeutic treatments.  相似文献   

8.
Humans are colonized after birth by microbial organisms that form a heterogeneous community, collectively termed microbiota. The genomic pool of this macro-community is named microbiome. The gut microbiota is essential for the complete development of the immune system, representing a binary network in which the microbiota interact with the host providing important immune and physiologic function and conversely the bacteria protect themselves from host immune defense. Alterations in the balance of the gut microbiome due to a combination of environmental and genetic factors can now be associated with detrimental or protective effects in experimental autoimmune diseases. These gut microbiome alterations can unbalance the gastrointestinal immune responses and influence distal effector sites leading to CNS disease including both demyelination and affective disorders. The current range of risk factors for MS includes genetic makeup and environmental elements. Of interest to this review is the consistency between this range of MS risk factors and the gut microbiome. We postulate that the gut microbiome serves as the niche where different MS risk factors merge, thereby influencing the disease process.  相似文献   

9.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterised by synovial inflammation and destruction of joints. Over 20 years ago, tumour necrosis factor alpha (TNFα) was identified as a key player in a cytokine network, whose multifunctional effects could account for both the inflammation and destruction in RA. The remarkable efficacy of TNF inhibitors in the treatment of RA has resulted in extensive research addressing the regulation of TNFα production responsible for this excessive production. The discovery of autoimmunity to citrullinated protein/peptide antigens (ACPA) has led the concept that ACPA may be the essential link between disease susceptibility factors and the production of TNFα, which ultimately accounts for the disease phenotype. In this review we will consider (1) the mechanisms of citrullination, both physiological and pathological, (2) how known genetic and environmental factors could drive this peculiar form of autoimmunity and (3) how the immune response could lead to excessive production of TNFα by the synovial cells and ultimately to the disease phenotype (Fig. 1).  相似文献   

10.
类风湿关节炎(RA)是一种病因和发病机制尚不清楚的自身免疫疾病,一般认为是由多种遗传因素和环境因素共同作用的结果。遗传因素中以组织相容性白细胞抗原HLA最为重要,另外作为非HLA的肽基精氨酸脱亚胺酶4(PADI4)也参与了RA的发病。PADI4是一种翻译后修饰酶,可在钙离子存在的情况下将精氨酸残基转化为瓜氨酸残基,瓜氨酸化后的蛋白质往往改变其分子构象,从而导致其生化活性亦发生改变。在不用种族的人群中,PADI4基因多态性与RA的易感性不尽相同。PADI4在RA患者血清中含量明显升高,在机体内产生自身抗PADI4抗体,并且PADI4瓜氨酸化多种蛋白质引起机体自身的免疫反应参与RA的发生与发展。近些年来的其他研究表明PAID4也参与了肿瘤、溃疡性结肠炎、多发性硬化症的发病。尽管针对PADI4的研究已经取得了很多重大进展,但是仍然存在很多悬而未决的问题等待科研工作者进一步的研究和证实。  相似文献   

11.
Inflammatory bowel disease (IBD) is a multifactorial disease which arises as a result of the interaction of genetic, environmental, barrier and microbial factors leading to chronic inflammation in the intestine. Patients with IBD had a higher risk of developing colorectal carcinoma (CRC), of which the subset was classified as colitis-associated cancers. Genetic polymorphism of innate immune receptors had long been considered a major risk factor for IBD, and the mutations were also recently observed in CRC. Altered microbial composition (termed microbiota dybiosis) and dysfunctional gut barrier manifested by epithelial hyperpermeability and high amount of mucosa-associated bacteria were observed in IBD and CRC patients. The findings suggested that aberrant immune responses to penetrating commensal microbes may play key roles in fueling disease progression. Accumulative evidence demonstrated that mucosa-associated bacteria harbored colitogenic and protumoral properties in experimental models, supporting an active role of bacteria as pathobionts (commensal-derived opportunistic pathogens). Nevertheless, the host factors involved in bacterial dysbiosis and conversion mechanisms from lumen-dwelling commensals to mucosal pathobionts remain unclear. Based on the observation of gut leakiness in patients and the evidence of epithelial hyperpermeability prior to the onset of mucosal histopathology in colitic animals, it was postulated that the epithelial barrier dysfunction associated with mucosal enrichment of specific bacterial strains may predispose the shift to disease-associated microbiota. The speculation of leaky gut as an initiating factor for microbiota dysbiosis that eventually led to pathological consequences was proposed as the “common ground hypothesis”, which will be highlighted in this review. Overall, the understanding of the core interplay between gut microbiota and epithelial barriers at early subclinical phases will shed light to novel therapeutic strategies to manage chronic inflammatory disorders and colitis-associated cancers.  相似文献   

12.
Suzuki A  Kochi Y  Okada Y  Yamamoto K 《FEBS letters》2011,585(23):3627-3632
Autoimmune diseases are caused by multiple genes and environmental effects. In addition, genetic contributions and the number of associated genes differ among different diseases and ethnic populations. Genome-wide association studies (GWAS) on rheumatoid arthritis (RA) and multiple sclerosis (MS) show that these diseases share many genetic factors. Recently, in addition to the major histocompatibility complex (MHC) gene, other genetic loci have been found to be associated with the risk for autoimmune diseases. This review focuses on the search for genetic variants that influence the susceptibility to RA and MS as typical autoimmune diseases and discusses the future of GWAS.  相似文献   

13.
Autoantibodies against citrullinated protein Ags (ACPA) are associated with the development of rheumatoid arthritis (RA). This immune response against citrullinated protein Ags, which is thought to be facilitated by certain MHC HLA-DR alleles, is highly specific for this disease and has been speculated to be involved in the pathogenesis. We have previously studied cultures of B cells for the production of Abs against HLA Ags. The aim of the current study was to examine the role of B cells in the production of ACPA in patients with RA. Peripheral blood B cells from RA patients and healthy people were cultured with EL4-B5, a murine cell line expressing human CD40L, and with T cell factors to stimulate the in vitro production of Abs by B cells isolated from peripheral blood. ACPA were produced by cultured B cells from RA patients, as determined by reactivity to cyclic citrullinated peptide (CCP). The results showed that 22% of the healthy persons tested also had B cells that could produce ACPA. Patients with HLA-DR alleles carrying the RA-associated shared epitope appeared to have more B cells with autoimmune potential for CCP than those without such HLA alleles (odds ratio 8.1, p = 0.001). In healthy individuals, anti-CCP-producing B cells were also observed more frequently if the RA-associated MHC genes were present (odds ratio 8.0, p = 0.01). Analysis of B cells in cultures may shed light on the interaction of genetic and environmental factors in the development of RA.  相似文献   

14.
The prevalence of rheumatoid arthritis (RA) is relatively constant in many populations, at 0.5-1.0%. However, a high prevalence of RA has been reported in the Pima Indians (5.3%) and in the Chippewa Indians (6.8%). In contrast, low occurrences have been reported in populations from China and Japan. These data support a genetic role in disease risk. Studies have so far shown that the familial recurrence risk in RA is small compared with other autoimmune diseases. The main genetic risk factor of RA is the HLA DRB1 alleles, and this has consistently been shown in many populations throughout the world. The strongest susceptibility factor so far has been the HLA DRB1*0404 allele. Tumour necrosis factor alleles have also been linked with RA. However, it is estimated that these genes can explain only 50% of the genetic effect. A number of other non-MHC genes have thus been investigated and linked with RA (e.g. corticotrophin releasing hormone, oestrogen synthase, IFN-gamma and other cytokines). Environmental factors have also been studied in relation to RA. Female sex hormones may play a protective role in RA; for example, the use of the oral contraceptive pill and pregnancy are both associated with a decreased risk. However, the postpartum period has been highlighted as a risk period for the development of RA. Furthermore, breastfeeding after a first pregnancy poses the greatest risk. Exposure to infection may act as a trigger for RA, and a number of agents have been implicated (e.g. Epstein-Barr virus, parvovirus and some bacteria such as Proteus and Mycoplasma). However, the epidemiological data so far are inconclusive. There has recently been renewed interest in the link between cigarette smoking and RA, and the data presented so far are consistent with and suggestive of an increased risk.  相似文献   

15.
Beta2-glycoprotein I (β2-GPI), an abundant 50 kDa plasma glycoprotein, is the most common target for antiphospholipid antibodies (aPLs). These autoantibodies are associated with thrombotic events in patients with anti-phospholipid antibody syndrome (APS) and systemic lupus erythematosus (SLE) and are proatherogenic. β2-GPI can also stimulate a vigorous adaptive cellular immune response in these patients. Although much is known about β2-GPI as a cofactor in autoimmune diseases, crucial information is still lacking to clarify why this abundant self plasma protein is the target of autoimmune responses. Throughout the years, a remarkable number of theories have been proposed to explain how the immune system recognises self. On the basis of a large variety of epidemiological, clinical and experimental evidence, it has been suggested that an unfortunate interplay of genetic susceptibility and environmental factors may play an important role in generating an abnormal immune response. Among the environmental factors, oxidative stress is one of the major events causing protein structural modifications, thus inducing the appearance of neo/cryptic epitopes of β2-GPI able to activate the immune system. In particular, oxidized β2-GPI is able to induce phenotypic and functional maturation of dendritic cells which represent the link between innate and adaptive immunity. Chronic activation of autoimmune reactions against this self protein modified by oxidative events may contribute to local and systemic inflammation, thus sustaining endothelial dysfunction in patients with APS, SLE and cardiovascular diseases. The role of oxidative stress in β2-GPI-mediated immune response is described in the light of our research experience and of relevant literature emerging in the field.  相似文献   

16.
Anti-citrullinated protein antibodies (ACPAs) of the IgG subtype have become a critical hallmark of HLA-associated rheumatoid arthritis (RA) and point to important contributions from the adaptive immune system. To dissect the contributing autoimmune reactions, investigators must not only identify the protein targets of ACPA but also define the precise peptides recognized by the immune system. Several possible approaches could be used to achieve this goal, and sensitive mass spectrometry of relevant tissue is a promising way forward in advancing our detailed understanding of autoimmune immune reactions involved in RA pathogenesis.  相似文献   

17.
Not much is known about the initial events leading to the development of the central nervous system (CNS)-specific autoimmune disorder Multiple Sclerosis (MS). Environmental factors are suspected to trigger the pathogenic events in people with genetic disease susceptibility. Historically, many infectious microbes were linked to MS, but no infection has ever been demonstrated to be the cause of the disease. Recent emerging evidence from animal models of MS suggests a causal link with resident commensal bacteria. Microbial organisms may trigger the activation of CNS-specific, auto-aggressive lymphocytes either through molecular mimicry or via bystander activation. In addition, several gut microbial metabolites and bacterial products may interact with the immune system to modulate CNS autoimmunity.  相似文献   

18.
19.
以HLAⅡ类转基因鼠研究类风湿关节炎的发病机制   总被引:1,自引:0,他引:1  
类风湿关节炎(RA)是一种常见的慢性自身免疫性疾病,至今发病原因不明。许多研究表明遗传因素是导致RA发病的最主要原因,而在遗传因素中约35%来自于人类白细胞抗原(HLA)Ⅱ类复合体。因此,对于HLA Ⅱ类复合体参与RA发病的分子机制研究一直是人们关注的热点,而表达HLA Ⅱ类分子的转基因鼠是研究HLA Ⅱ类复合体与RA发病关系最佳的平台。目前,国外已建立了几个HLA Ⅱ类转基因鼠品系,为RA发病机制的研究奠定了很好的基础。本文对HLA Ⅱ类转基因鼠及以此为基础的RA相关研究进行综述。  相似文献   

20.
Rheumatoid arthritis (RA) is an autoimmune disease, the pathogenesis of which is affected by multiple genetic and environmental factors. To understand the genetic and molecular basis of RA, a large number of quantitative trait loci (QTL) that regulate experimental autoimmune arthritis have been identified using various rat models for RA. However, identifying the particular responsible genes within these QTL remains a major challenge. Using currently available genome data and gene annotation information, we systematically examined RA-associated genes and polymorphisms within and outside QTL over the whole rat genome. By the whole genome analysis of genes and polymorphisms, we found that there are significantly more RA-associated genes in QTL regions as contrasted with non-QTL regions. Further experimental studies are necessary to determine whether these known RA-associated genes or polymorphisms are genetic components causing the QTL effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号