首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
E. Arnason  D. M. Rand 《Genetics》1992,132(1):211-220
The mitochondrial DNA of the Atlantic cod (Gadus morhua) contains a tandem array of 40-bp repeats in the D-loop region of the molecule. Variation among molecules in the copy number of these repeats results in mtDNA length variation and heteroplasmy (the presence of more than one form of mtDNA in an individual). In a sample of fish collected from different localities around Iceland and off George's Bank, each individual was heteroplasmic for two or more mtDNAs ranging in repeat copy number from two (common) to six (rare). An earlier report on mtDNA heteroplasmy in sturgeon (Acipenser transmontanus) presented a competitive displacement model for length mutations in mtDNAs containing tandem arrays and the cod data deviate from this model. Depending on the nature of putative secondary structures and the location of D-loop strand termination, additional mechanisms of length mutation may be needed to explain the range of mtDNA length variants maintained in these populations. The balance between genetic drift and mutation in maintaining this length polymorphism is estimated through a hierarchical analysis of diversity of mtDNA length variation in the Iceland samples. Eighty percent of the diversity lies within individuals, 8% among individuals and 12% among localities. An estimate of theta = 2N(eo) mu greater than 1 indicates that this system is characterized by a high mutation rate and is governed primarily by deterministic dynamics. The sequences of repeat arrays from fish collected in Norway, Iceland and George's Bank show no nucleotide variation suggesting that there is very little substructuring to the North Atlantic cod population.  相似文献   

2.
Ludwig A  May B  Debus L  Jenneckens I 《Genetics》2000,156(4):1933-1947
Data from 1238 fishes from 19 sturgeon species and 1 paddlefish were used to analyze heteroplasmy in sturgeon. Lengths of central repeat units ranged from 74 to 83 bp among sturgeon species. No repeat sequence was found in the paddlefish, Polyodon spathula. A general feature of the repeat units was the presence of termination associated sequence (TAS) motifs. About 50% of 138 interspecific mutations observed among the D-loop sequences are located 10 bp down- and upstream from these TAS motifs. Interestingly, most homoplasmic species showed deletions upstream to the TAS motifs, whereas deletions downstream to the TAS motifs observed in two species do not seem to preclude heteroplasmy. Calculations of secondary structures and thermal stabilities of repeat units showed DeltaG values for all heteroplasmic species to be <-8 and for most homoplasmic species DeltaG value to be >-8. Most heteroplasmic fishes had two and/or three repeat units. No homoplasmic sturgeon with >2 repeat units were observed. Molecular phylogeny based on the entire cytochrome b showed that heteroplasmy probably resulted from a single evolutionary event. Our data demonstrate that heteroplasmy is present in most sturgeon species and suggest that the thermal stability of the secondary structure of the repeat unit in combination with mutations downstream of the TAS sequences influences heteroplasmy.  相似文献   

3.
Bentzen P  Leggett WC  Brown GG 《Genetics》1988,118(3):509-518
Restriction endonuclease analysis was used to assess mitochondrial DNA (mtDNA) variation in American shad (Alosa sapidissima) collected from 14 rivers ranging from Florida to Quebec. Two types of heteroplasmy were observed, one involving a major length polymorphism and the other a single restriction site. Shad mtDNA occurred in two principal size classes, 18.3 and 19.8 kb. Of 244 shad examined, 30 were heteroplasmic and carried both size classes of mtDNA in varying proportions; the remainder were homoplasmic for the smaller size class of mtDNA. The large mtDNA variant occurred most frequently at the southern end of the range, and except for two individuals from Nova Scotia, was not detected among shad from rivers north of the Delaware. In contrast, ten shad heteroplasmic for a SalI restriction site originated from rivers ranging from South Carolina to Nova Scotia. DNA mapping and hybridization experiments indicated that the length polymorphism is in the D-loop-containing region and consists of a tandemly repeated 1.5-kb DNA sequence occurring in two and three copies, respectively, in the two major size classes of shad mtDNA. Continuous length variation up to approximately 40 bp occurs among copies of the repeat both within and among individuals. Restriction site data support the conclusion that both forms of heteroplasmy in shad mtDNA have originated more than once.  相似文献   

4.
Being highly polymorphic, microsatellites are widely used genetic markers. They are abundant throughout the nuclear genomes of eukaryotes but rare in the mitochondrial genomes (mtDNA) of animals. We describe a short but highly polymorphic AT microsatellite in the mtDNA control region of Bechstein’s bat and discuss the role of mutation, genetic drift, and selection in maintaining its variability. As heteroplasmy and hence mutation rate were positively correlated with repeat number, a simple mutation model cannot explain the observed frequency distribution of AT copy numbers. Because of the unimodal distribution of repeat numbers found in heteroplasmic individuals, single step mutations are likely to be the predominant mechanism of copy number alternations. Above a certain copy number (seven repeats), deletions of single dinucleotide repeats seem to be more common than additions, which results in a decrease in frequency of long alleles. Heteroplasmy was inherited from mothers to their offspring and no evidence of paternal inheritance of mitochondria was found. Genetic differences accumulated with more distant ancestry, which suggests that microsatellites can be useful genetic markers in population genetics.[Reviewing Editor: Dr. Rafael Zardoya]  相似文献   

5.
Sturgeons are fish species with a complex biology. They are also characterized by complex aspects including polyploidization and easiness of hybridization. As with most of the Ponto-Caspian sturgeons, the populations of Acipenser ruthenus from the Danube have declined drastically during the last decades. This is the first report on mitochondrial point heteroplasmy in the cytochrome b gene of this species. The 1141 bp sequence of the cytb gene in wild sterlet sturgeon individuals from the Lower Danube was determined, and site heteroplasmy evidenced in three of the 30 specimens collected. Two nucleotide sequences were identified in these heteroplasmic individuals. The majority of the heteroplasmic sites are synonymous and do not modify the sequence of amino acids in cytochrome B protein. To date, several cases of point heteroplasmy have been reported in animals, mostly due to paternal leakage of mtDNA. The presence of specific point heteroplasmic sites might be interesting for a possible correlation with genetically distinct groups in the Danube River.  相似文献   

6.
The extent of mtDNA length variation and heteroplasmy as well as DNA sequences of the control region and two tRNA genes were determined for four North American sturgeon species: Acipenser transmontanus, A. medirostris, A. fulvescens and A. oxyrhnychus. Across the Continental Divide, a division in the occurrence of length variation and heteroplasmy was observed that was concordant with species biogeography as well as with phylogenies inferred from restriction fragment length polymorphisms (RFLP) of whole mtDNA and pairwise comparisons of unique sequences of the control region. In all species, mtDNA length variation was due to repeated arrays of 78-82-bp sequences each containing a D-loop strand synthesis termination associated sequence (TAS). Individual repeats showed greater sequence conservation within individuals and species rather than between species, which is suggestive of concerted evolution. Differences in the frequencies of multiple copy genomes and heteroplasmy among the four species may be ascribed to differences in the rates of recurrent mutation. A mechanism that may offset the high rate of mutation for increased copy number is suggested on the basis that an increase in the number of functional TAS motifs might reduce the frequency of successfully initiated H-strand replications.  相似文献   

7.
The mitochondrial DNA (mtDNA) substitution rate and segregation of heteroplasmy were studied for the non-coding control region (D-loop) and 500 bp of the coding region between nucleotide positions 5550 and 6050, by sequence analysis of blood samples from 194 individuals, representing 33 maternal lineages. No homoplasmic nucleotide substitutions were detected in a total of 292 transmissions. The estimated substitution rate per nucleotide per million years for the control region (micro>0.21, 95% CI 0-0.6) was not significantly different from that for the coding region (micro>0.54, 95% CI 0-1.0). Variation in the length of homopolymeric C streches was observed at three sites in the control region (positions 65, 309 and 16,189), all of which were in the heteroplasmic state. Segregation of heteroplasmic genotypes between generations was observed in several maternal pedigrees. At position 309, a longer poly C tract length was strongly associated with a higher probability for heteroplasmy and rapid segregation between generations. The length heteroplasmy at positions 65 and 16,189 was found at low frequency and was confined to a few families.  相似文献   

8.
Instances of point and length heteroplasmy in the mitochondrial DNA control region were compiled and analyzed from over 5,000 global human population samples. These data represent observations from a large and broad population sample, representing nearly 20 global populations. As expected, length heteroplasmy was frequently observed in the HVI, HVII and HVIII C-stretches. Length heteroplasmy was also observed in the AC dinucleotide repeat region, as well as other locations. Point heteroplasmy was detected in approximately 6% of all samples, and while the vast majority of heteroplasmic samples comprised two molecules differing at a single position, samples exhibiting two and three mixed positions were also observed in this data set. In general, the sites at which heteroplasmy was most commonly observed correlated with reported control region mutational hotspots. However, for some sites, observations of heteroplasmy did not mirror established mutation rate data, suggesting the action of other mechanisms, both selective and neutral. Interestingly, these data indicate that the frequency of heteroplasmy differs between particular populations, perhaps reflecting variable mutation rates among different mtDNA lineages and/or artifacts of particular population groups. The results presented here contribute to our general understanding of mitochondrial DNA control region heteroplasmy and provide additional empirical information on the mechanisms contributing to mtDNA control region mutation and evolution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Length differences in animal mitochondrial DNA (mtDNA) are common, frequently due to variation in copy number of direct tandem duplications. While such duplications appear to form without great difficulty in some taxonomic groups, they appear to be relatively short-lived, as typical duplication products are geographically restricted within species and infrequently shared among species. To better understand such length variation, we have studied a tandem and direct duplication of approximately 260 bp in the control region of the cyprinid fish, Cyprinella spiloptera. Restriction site analysis of 38 individuals was used to characterize population structure and the distribution of variation in repeat copy number. This revealed two length variants, including individuals with two or three copies of the repeat, and little geographic structure among populations. No standard length (single copy) genomes were found and heteroplasmy, a common feature of length variation in other taxa, was absent. Nucleotide sequence of tandem duplications and flanking regions localized duplication junctions in the phenylalanine tRNA and near the origin of replication. The locations of these junctions and the stability of folded repeat copies support the hypothesized importance of secondary structures in models of duplication formation.  相似文献   

10.
Lee HC  Hsu LS  Yin PH  Lee LM  Chi CW 《Mitochondrion》2007,7(1-2):157-163
Somatic mutations in mitochondrial DNA (mtDNA) have been demonstrated in various human cancers. Many cancers have high frequently of mtDNA with homoplasmic point mutations, and carry less frequently of mtDNA with large-scale deletions as compared with corresponding non-cancerous tissue. Moreover, most cancers harbor a decreased copy number of mtDNA than their corresponding non-cancerous tissue. However, it is unclear whether the process of decreasing in mtDNA content would be involved in an increase in the heteroplasmic level of somatic mtDNA point mutation, and/or involved in a decrease in the proportion of mtDNA with large-scale deletion in cancer cells. In this study, we provided evidence that the heteroplasmic levels of variations in cytidine number in np 303-309 poly C tract of mtDNA in three colon cancer cells were not changed during an ethidium bromide-induced mtDNA depleting process. In the mtDNA depleting process, the proportions of mtDNA with 4977-bp deletion in cybrid cells were not significantly altered. These results suggest that the decreasing process of mtDNA copy number per se may neither contribute to the shift of homoplasmic/heteroplasmic state of point mutation in mtDNA nor to the decrease in proportion of mtDNA with large-scale deletions in cancer cells. Mitochondrial genome instability and reduced mtDNA copy number may independently occur in human cancer.  相似文献   

11.
Molecular Population Genetics of Mtdna Size Variation in Crickets   总被引:14,自引:4,他引:10       下载免费PDF全文
D. M. Rand  R. G. Harrison 《Genetics》1989,121(3):551-569
Nucleotide sequence analysis of a region of cricket (Gryllus firmus) mtDNA showing discrete length variation revealed tandemly repeated sequences 220 base pairs (bp) in length. The repeats consist of 206 bp sequences bounded by the dyad symmetric sequence 5'GGGGGCATGCCCCC3'. The sequence data showed that mtDNA size variation in this species is due to variation in the number of copies of tandem repeats. Southern blot analysis was used to document the frequency of crickets heteroplasmic for two or more different-sized mtDNAs. In New England populations of G. firmus and a close relative Gryllus pennsylvanicus approximately 60% of the former and 45% of the latter were heteroplasmic. From densitometry of autoradiographs the frequencies of mtDNA size classes were determined for the population samples and are shown to very different in the two species. However, in populations where hybridization between the two species has occurred, the frequencies of size classes and cytoplasmic genotypes in each species' distinct mtDNA lineage were shifted in a manner suggesting nuclear-cytoplasmic interactions. The data were applied to reported diversity indices and hierarchical statistics. The hierarchical statistics indicated that the greatest proportion of variation for mtDNA size was due to variation among individuals in their cytoplasmic genotypes (heteroplasmic or homoplasmic state). The diversity indices were used to estimate a per-generation mutation rate for size variants of 10(-4). The data are discussed in light of the relationship between genetic drift and mutation in maintaining variation for mtDNA size.  相似文献   

12.
The mtDNA 1555A>G mutation was considered to be one of the most common causes of aminoglycoside-induced and non-syndromic hearing loss. However, this mutation was always found in homoplasmy with high phenotypic heterogeneity. Recently this mutation in heteroplasmy has been reported in several studies. In the present study, we have collected a large Chinese family harboring heteroplasmic mtDNA 1555A>G mutation with diverse clinical phenotypes. To investigate the relationship between the mutation load and the severity of hearing loss under Eastern Asian background, we performed clinical, molecular, genetic and phylogenic analysis. This pedigree was characterized by coexistence of eight subjects with homoplasmic mutation and ten subjects with various degrees of heteroplasmy, and the results suggested that there was a strong correlation between the mutation load and the severity/age-onset of hearing loss (r=0.758, p<0.001). We noticed that the mutation level of offspring was associated with their mothers' in this pedigree, which indicated that maybe exist a regular pattern during the process of the heteroplasmic transmission. In addition, analysis of the complete mtDNA genome of this family revealed that it belonged to Eastern Asian haplogroup B4C1. In addition, a rare homoplasmic mtDNA 9128T>C variant was identified, it located at a strictly conserved site of mtDNA ATP6 gene.  相似文献   

13.
Mitochondrial genotypes have been shown to segregate both rapidly and slowly when transmitted to consecutive generations in mammals. Our objective was to develop an animal model to analyze the patterns of mammalian mitochondrial DNA (mtDNA) segregation and transmission in an intraspecific heteroplasmic maternal lineage to investigate the mechanisms controlling these phenomena. Heteroplasmic progeny were obtained from reconstructed blastocysts derived by transplantation of pronuclear-stage karyoplasts to enucleated zygotes with different mtDNA. Although the reconstructed zygotes contained on average 19% mtDNA of karyoplast origin, most progeny contained fewer mtDNA of karyoplast origin and produced exclusively homoplasmic first generation progeny. However, one founder heteroplasmic adult female had elevated tissue heteroplasmy levels, varying from 6% (lung) to 69% (heart), indicating that stringent replicative segregation had occurred during mitotic divisions. First generation progeny from the above female were all heteroplasmic, indicating that, despite a meiotic segregation, they were derived from heteroplasmic founder oocytes. Some second and third generation progeny contained exclusively New Zealand Black/BINJ mtDNA, suggesting, but not confirming, an origin from an homoplasmic oocyte. Moreover, several third to fifth generation individuals maintained mtDNA from both mouse strains, indicating a slow or persistent segregation pattern characterized by diminished tissue and litter variability beyond second generation progeny. Therefore, although some initial lineages appear to segregate rapidly to homoplasmy, within two generations other lineages transmit stable amounts of both mtDNA molecules, supporting a mechanism where mitochondria of different origin may fuse, leading to persistent intraorganellar heteroplasmy.  相似文献   

14.
For identification of somatic mitochondrial DNA (mtDNA) mutations, the mtDNA major noncoding region (D-loop) sequence in blood samples and carotid atherosclerosis plaques from patients with atherosclerosis was analyzed. Five point heteroplasmic positions were observed in 4 of 23 individuals (17%). Only in two cases could heteroplasmy have resulted from somatic mutation, whereas three heteroplasmic positions were found in both vascular tissue and blood. In addition, length heteroplasmy in a polycytosine stretches was registered at nucleotide positions 303–315 in 16 individuals, and also in the 16184–16193 region in four patients. The results suggest that somatic mtDNA mutations can occur during atherosclerosis, but some heteroplasmic mutations may appear in all tissues, possibly being inherited.  相似文献   

15.
Mouse models are widely employed to study mitochondrial inheritance, which have implications to several human diseases caused by mutations in the mitochondrial genome (mtDNA). These mouse models take advantage of polymorphisms between the mtDNA of the NZB/BINJ and the mtDNA of common inbred laboratory (i.e., C57BL/6) strains to generate mice with two mtDNA haplotypes (heteroplasmy). Based on PCR followed by restriction fragment length polymorphism (PCR-RFLP), these studies determine the level of heteroplasmy across generations and in different cell types aiming to understand the mechanisms underlying mitochondrial inheritance. However, PCR-RFLP is a time-consuming method of low sensitivity and accuracy that dependents on the use of restriction enzyme digestions. A more robust method to measure heteroplasmy has been provided by the use of real-time quantitative PCR (qPCR) based on allelic refractory mutation detection system (ARMS-qPCR). Herein, we report an ARMS-qPCR assay for quantification of heteroplasmy using heteroplasmic mice with mtDNA of NZB/BINJ and C57BL/6 origin. Heteroplasmy and mtDNA copy number were estimated in germline and somatic tissues, providing evidence of the reliability of the approach. Furthermore, it enabled single-step quantification of heteroplasmy, with sensitivity to detect as low as 0.1% of either NZB/BINJ or C57BL/6 mtDNA. These findings are relevant as the ARMS-qPCR assay reported here is fully compatible with similar heteroplasmic mouse models used to study mitochondrial inheritance in mammals.  相似文献   

16.
Heteroplasmy, the existence of multiple mtDNA types within an individual, has been previously detected by using mostly indirect methods and focusing largely on just the hypervariable segments of the control region. Next-generation sequencing technologies should enable studies of heteroplasmy across the entire mtDNA genome at much higher resolution, because many independent reads are generated for each position. However, the higher error rate associated with these technologies must be taken into consideration to avoid false detection of heteroplasmy. We used simulations and phiX174 sequence data to design criteria for accurate detection of heteroplasmy with the Illumina Genome Analyzer platform, and we used artificial mixtures and replicate data to test and refine the criteria. We then applied these criteria to mtDNA sequence reads for 131 individuals from five Eurasian populations that had been generated via a parallel tagged approach. We identified 37 heteroplasmies at 10% frequency or higher at 34 sites in 32 individuals. The mutational spectrum does not differ between heteroplasmic mutations and polymorphisms in the same individuals, but the relative mutation rate at heteroplasmic mutations is significantly higher than that estimated for all mutable sites in the human mtDNA genome. Moreover, there is also a significant excess of nonsynonymous mutations observed among heteroplasmies, compared to polymorphism data from the same individuals. Both mutation-drift and negative selection influence the fate of heteroplasmies to determine the polymorphism spectrum in humans. With appropriate criteria for avoiding false positives due to sequencing errors, next-generation technologies can provide novel insights into genome-wide aspects of mtDNA heteroplasmy.  相似文献   

17.
M. H. Gach  W. M. Brown 《Genetics》1997,145(2):383-394
Most animal mitochondrial DNAs (mtDNAs) range in size from 15 to 18 kb, but increased sizes up to ~40 kb are occasionally found. We investigated large size variation in mtDNA of the brook stickleback fish, Culaea inconstans, and characterized four large (2.7-5.8 kb) tandem duplications. Duplications differ in size, frequency of occurrence, and degree of associated heteroplasmy, but each includes the control region and one or more adjacent genes. Duplications are correlated with two mtDNA lineages sampled from 31 populations. L(1) duplications (3.2-4.8 kb) were present in all lineage I individuals (n = 121, 19 populations); 53 fish were heteroplasmic due to variation in the copy number of a tandemly repeated 270-bp sequence within the duplicated region. In contrast, duplications L(2), L(3), and L(4) (2.7-5.8 kb) occurred in only 117 of 174 lineage II fish, in eight of 14 populations. Nine fish with L(3) or L(4) duplications were heteroplasmic, possessing some mtDNAs that lacked duplications (normal-length mtDNAs). Heteroplasmy in L(2) was associated with a small variable region near the ND5 gene. Phylogenetic analysis of restriction sites in Culaea mtDNAs and haplotype-defining sequence differences present in both copies argue for multiple independent events that gave rise to three of the four duplications.  相似文献   

18.
In this work, we present the results of the screening of human mitochondrial DNA (mtDNA) heteroplasmy in the control region of mtDNA from 210 unrelated Spanish individuals. Both hypervariable regions of mtDNA were amplified and sequenced in order to identify and quantify point and length heteroplasmy. Of the 210 individuals analyzed, 30% were fully homoplasmic and the remaining presented point and/or length heteroplasmy. The prevalent form of heteroplasmy was length heteroplasmy in the poly(C) tract of the hypervariable region II (HVRII), followed by length heteroplasmy in the poly(C) tract of hypervariable region I (HVRI) and, finally, point heteroplasmy, which was found in 3.81% of the individuals analyzed. Moreover, no significant differences were found in the proportions of the different kinds of heteroplasmy in the population when blood and buccal cell samples were compared. The pattern of heteroplasmy in HVRI and HVRII presents important differences. Moreover, the mutational profile in heteroplasmy seems to be different from the mutational pattern detected in population. The results suggest that a considerable number of mutations and, particularly, transitions that appear in heteroplasmy are probably eliminated by drift and/or by selection acting at different mtDNA levels of organization. Taking as a whole the results reported in this work, it is mandatory to perform a broad-scale screening of heteroplasmy to better establish the heteroplasmy profile which would be important for medical, evolutionary, and forensic proposes.  相似文献   

19.
G. S. Wilkinson  F. Mayer  G. Kerth    B. Petri 《Genetics》1997,146(3):1035-1048
Analysis of mitochondrial DNA control region sequences from 41 species of bats representing 11 families revealed that repeated sequence arrays near the tRNA-Pro gene are present in all vespertilionine bats. Across 18 species tandem repeats varied in size from 78 to 85 bp and contained two to nine repeats. Heteroplasmy ranged from 15% to 63%. Fewer repeats among heteroplasmic than homoplasmic individuals in a species with up to nine repeats indicates selection may act against long arrays. A lower limit of two repeats and more repeats among heteroplasmic than homoplasmic individuals in two species with few repeats suggests length mutations are biased. Significant regressions of heteroplasmy, θ and π, on repeat number further suggest that repeat duplication rate increases with repeat number. Comparison of vespertilionine bat consensus repeats to mammal control region sequences revealed that tandem repeats of similar size, sequence and number also occur in shrews, cats and bighorn sheep. The presence of two conserved protein-binding sequences in all repeat units indicates that convergent evolution has occurred by duplication of functional units. We speculate that D-loop region tandem repeats may provide signal redundancy and a primitive repair mechanism in the event of somatic mutations to these binding sites.  相似文献   

20.
Characterization of mitochondrial DNA (mtDNA) single nucleotide polymorphisms (SNPs) and mutations is crucial for disease diagnosis, which requires accurate and sensitive detection methods and quantification due to mitochondrial heteroplasmy. We report here the characterization of mutations for myoclonic epilepsy with ragged red fibers syndrome using chemically cleavable biotinylated dideoxynucleotides and a mass spectrometry (MS)-based solid phase capture (SPC) single base extension (SBE) assay. The method effectively eliminates unextended primers and primer dimers, and the presence of cleavable linkers between the base and biotin allows efficient desalting and release of the DNA products from solid phase for MS analysis. This approach is capable of high multiplexing, and the use of different length linkers for each of the purines and each of the pyrimidines permits better discrimination of the four bases by MS. Both homoplasmic and heteroplasmic genotypes were accurately determined on different mtDNA samples. The specificity of the method for mtDNA detection was validated by using mitochondrial DNA-negative cells. The sensitivity of the approach permitted detection of less than 5% mtDNA heteroplasmy levels. This indicates that the SPC-SBE approach based on chemically cleavable biotinylated dideoxynucleotides and MS enables rapid, accurate, and sensitive genotyping of mtDNA and has broad applications for genetic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号