首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 975 毫秒
1.
2.
To elucidate the mechanisms involved in Rhizobium-legume symbiosis, we examined a novel symbiotic mutant, crinkle (Ljsym79), from the model legume Lotus japonicus. On nitrogen-starved medium, crinkle mutants inoculated with the symbiont bacterium Mesorhizobium loti MAFF 303099 showed severe nitrogen deficiency symptoms. This mutant was characterized by the production of many bumps and small, white, uninfected nodule-like structures. Few nodules were pale-pink and irregularly shaped with nitrogen-fixing bacteroids and expressing leghemoglobin mRNA. Morphological analysis of infected roots showed that nodulation in crinkle mutants is blocked at the stage of the infection process. Confocal microscopy and histological examination of crinkle nodules revealed that infection threads were arrested upon penetrating the epidermal cells. Starch accumulation in uninfected cells and undeveloped vascular bundles were also noted in crinkle nodules. Results suggest that the Crinkle gene controls the infection process that is crucial during the early stage of nodule organogenesis. Aside from the symbiotic phenotypes, crinkle mutants also developed morphological alterations, such as crinkly or wavy trichomes, short seedpods with aborted embryos, and swollen root hairs. crinkle is therefore required for symbiotic nodule development and for other aspects of plant development.  相似文献   

3.
4.
5.
Ke D  Fang Q  Chen C  Zhu H  Chen T  Chang X  Yuan S  Kang H  Ma L  Hong Z  Zhang Z 《Plant physiology》2012,159(1):131-143
Nod Factor Receptor5 (NFR5) is an atypical receptor-like kinase, having no activation loop in the protein kinase domain. It forms a heterodimer with NFR1 and is required for the early plant responses to Rhizobium infection. A Rho-like small GTPase from Lotus japonicus was identified as an NFR5-interacting protein. The amino acid sequence of this Rho-like GTPase is closest to the Arabidopsis (Arabidopsis thaliana) ROP6 and Medicago truncatula ROP6 and was designated as LjROP6. The interaction between Rop6 and NFR5 occurred both in vitro and in planta. No interaction between Rop6 and NFR1 was observed. Green fluorescent protein-tagged ROP6 was localized at the plasma membrane and cytoplasm. The interaction between ROP6 and NFR5 appeared to take place at the plasma membrane. The expression of the ROP6 gene could be detected in vascular tissues of Lotus roots. After inoculation with Mesorhizobium loti, elevated levels of ROP6 expression were found in the root hairs, root tips, vascular bundles of roots, nodule primordia, and young nodules. In transgenic hairy roots expressing ROP6 RNA interference constructs, Rhizobium entry into the root hairs did not appear to be affected, but infection thread growth through the root cortex were severely inhibited, resulting in the development of fewer nodules per plant. These data demonstrate a role of ROP6 as a positive regulator of infection thread formation and nodulation in L. japonicus.  相似文献   

6.
7.
8.
9.
Uricase (nodulin-35) cDNA, LjUr, was isolated from nodules of a model legume, Lotus japonicus. LjUr expression was most abundant in nodules, although it was detected in nonsymbiotic tissues as well, particularly in roots. Expression in nodules was detected in uninfected cells, nodule parenchyma, and, more intensely, in vascular bundles. Phylogenetic analysis of uricase sequences from various legumes indicated that uricases of amide- and ureide-transporting legumes form two distinct clades. LjUr is in the cluster of amide-transport legumes even though L. japonicus bears determinate nodules.  相似文献   

10.
11.
12.
13.
14.
Two different types of nitrogen-fixing root nodules are known — actinorhizal nodules induced byFrankia and legume nodules induced by rhizobia. While legume nodules show a stem-like structure with peripheral vascular bundles, actinorhizal nodule lobes resemble modified lateral roots with a central vascular bundle. To compare carbon metabolism in legume and actinorhizal nodules, sucrose synthase and enolase cDNA clones were isolated from a cDNA library, obtained from actinorhizal nodules ofAlnus glutinosa. The expression of the corresponding genes was markedly enhanced in nodules compared to roots. In situ hybridization showed that, in nodules, both sucrose synthase and enolase were expressed at high levels in the infected cortical cells as well as in the pericycle of the central vascular bundle of a nodule lobe. Legume sucrose synthase expression was studied in indeterminate nodules from pea and determinate nodules fromPhaseolus vulgaris by usingin situ hybridization.  相似文献   

15.
16.
Two different types of nitrogen-fixing root nodules are known — actinorhizal nodules induced byFrankia and legume nodules induced by rhizobia. While legume nodules show a stem-like structure with peripheral vascular bundles, actinorhizal nodule lobes resemble modified lateral roots with a central vascular bundle. To compare carbon metabolism in legume and actinorhizal nodules, sucrose synthase and enolase cDNA clones were isolated from a cDNA library, obtained from actinorhizal nodules ofAlnus glutinosa. The expression of the corresponding genes was markedly enhanced in nodules compared to roots. In situ hybridization showed that, in nodules, both sucrose synthase and enolase were expressed at high levels in the infected cortical cells as well as in the pericycle of the central vascular bundle of a nodule lobe. Legume sucrose synthase expression was studied in indeterminate nodules from pea and determinate nodules fromPhaseolus vulgaris by usingin situ hybridization.  相似文献   

17.
Two cDNA clones coding for α-type carbonic anhydrases (CA; EC 4.2.1.1) in the nitrogen-fixing nodules of the model legume Lotus japonicus were identified. Functionality of the full-length proteins was confirmed by heterologous expression in Escherichia coli and purification of the encoded polypeptides. The developmental expression pattern of LjCAA1 and LjCAA2 revealed that both genes code for nodule enhanced carbonic anhydrase isoforms, which are induced early during nodule development. The genes were slightly to moderately down-regulated in ineffective nodules formed by mutant Mesorhizobium loti strains, indicating that these genes may also be involved in biochemical and physiological processes not directly linked to nitrogen fixation/assimilation. The spatial expression profiling revealed that both genes were expressed in nodule inner cortical cells, vascular bundles and central tissue. These results are discussed in the context of the possible roles of CA in nodule carbon dioxide (CO(2)) metabolism.  相似文献   

18.
19.
We used the cytokinin-responsive Arabidopsis response regulator (ARR)5 gene promoter fused to a beta-glucuronidase (GUS) reporter gene, and cytokinin oxidase (CKX) genes from Arabidopsis thaliana (AtCKX3) and maize (ZmCKX1) to investigate the roles of cytokinins in lateral root formation and symbiosis in Lotus japonicus. ARR5 expression was undetectable in the dividing initial cells at early stages of lateral root formation, but later we observed high expression in the base of the lateral root primordium. The root tip continues to express ARR5 during subsequent development of the lateral root. These results suggest a dynamic role for cytokinin in lateral root development. We observed ARR5 expression in curled/deformed root hairs, and also in nodule primordia in response to Rhizobial inoculation. This expression declined once the nodule emerged from the parent root. Root penetration and migration of root-knot nematode (RKN) second-stage larvae (L2) did not elevate ARR5 expression, but a high level of expression was induced when L2 reached the differentiating vascular bundle and during early stages of the nematode-plant interaction. ARR5 expression was specifically absent in mature giant cells (GCs), although dividing cells around the GCs continued to express this reporter. The same pattern was observed using a green fluorescent protein (GFP) reporter driven by the ARR5 promoter in tomato. Overexpression of CKX genes rendered the transgenic hairy roots resistant to exogenous application of the cytokinin [N6-(Delta2 isopentenyl) adenine riboside] (iPR). CKX roots have significantly more lateral roots, but fewer nodules and nematode-induced root galls per plant, than control hairy roots.  相似文献   

20.
Lucifer Yellow (LYCH) and carboxyfluorescein (CF) served in Medicago truncatula roots and root nodules as the markers of apoplastic and symplastic transport, respectively. The aim of this study was to understand better the water and photoassimilate translocation pathways to and within nodules. The present study shows that in damaged roots LYCH moves apoplastically through the vascular elements but it was not detected within the nodule vascular bundles. In intact roots, the outer cortex was strongly labeled but the dye was not present in the interior of intact root nodules. The inwards movement of LYCH was halted in the endodermis. When the dye was introduced into a damaged nodule by infiltration, it spread only in the cell walls and the intercellular spaces up to the inner cortex. Our research showed that in addition to the outer cortex, the inner tissue containing bacteroid-infected cells is also an apoplastic domain. Our results are consistent with the hypothesis that nodules do not receive water from the xylem but get it and photoassimilates from phloem. A comparison between using LYCH and LYCH followed by glutaraldehyde fixation indicates that glutaraldehyde is responsible for fluorescence of some organelles within root nodule cells. The influence of the fixation on nodule fluorescence has not been reported before but must be taken into consideration to avoid errors. An attempt was made to follow carboxyfluorescein (6(5) CF) translocation from leaflets into roots and root nodules. In root nodules, CF was present in all or a couple of vascular bundles (VB), vascular endodermis and some adjacent cells. The leakage of CF from the VBs was observed, which suggests symplastic continuity between the VBs and the nodule parenchyma. The lack of CF in inner tissue was observed. Therefore, photoassimilate entry to the infected region of nodule must involve an apoplastic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号