首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 766 毫秒
1.
 Vestibular and optokinetic nystagmus are characterized by alternating slow-phase eye rotations that stabilize the retinal image, and fast-phase eye rotations that reset eye position. Nystagmus is coordinated in the brainstem by burst neurons that fire an intense, temporally circumscribed burst that terminates the slow phase and drives the fast phase. This paper demonstrates that such a burst can be generated during nystagmus using a simple neural network model containing only known brainstem neurons and their interconnections. These include the feedback connections of the burst neuron (burst feedback). The burst neuron excites itself directly, and disinhibits itself by inhibiting the pause neuron (positive feedback). It also inhibits itself by inhibiting the vestibular neuron (negative feedback). The burst neuron begins to fire after its inhibitory bias is overcome by excitation from the vestibular neuron, and burst neuron positive feedback then produces an intense burst with an abrupt onset. The burst causes the vestibular and pause neurons to pause. The benefit of the pause neuron loop is that it contributes to burst neuron positive feedback when it is needed at burst onset, but that contribution is eliminated when the pause neuron pauses and opens the loop. The burst can then terminate, with an offset duration proportional to burst amplitude, under the control of burst neuron self-excitation and inhibitory bias. Model neuron behavior is comparable to that of real brainstem neurons. Synchronized bursts can be produced over the population of burst neurons in a distributed version of the network. Variability in connection weights in the distributed network results in variability in prelude activity among burst neurons that is similar to the spread in lead observed for real burst neurons during nystagmus. Received: 11 April 1996 / Accepted in revised form: 6 August 1996  相似文献   

2.
What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition.  相似文献   

3.
Rats and mice use their whiskers to probe the environment. By rhythmically swiping their whiskers back and forth they can detect the existence of an object, locate it, and identify its texture. Localization can be accomplished by inferring the whisker’s position. Rhythmic neurons that track the phase of the whisking cycle encode information about the azimuthal location of the whisker. These neurons are characterized by preferred phases of firing that are narrowly distributed. Consequently, pooling the rhythmic signal from several upstream neurons is expected to result in a much narrower distribution of preferred phases in the downstream population, which however has not been observed empirically. Here, we show how spike timing dependent plasticity (STDP) can provide a solution to this conundrum. We investigated the effect of STDP on the utility of a neural population to transmit rhythmic information downstream using the framework of a modeling study. We found that under a wide range of parameters, STDP facilitated the transfer of rhythmic information despite the fact that all the synaptic weights remained dynamic. As a result, the preferred phase of the downstream neuron was not fixed, but rather drifted in time at a drift velocity that depended on the preferred phase, thus inducing a distribution of preferred phases. We further analyzed how the STDP rule governs the distribution of preferred phases in the downstream population. This link between the STDP rule and the distribution of preferred phases constitutes a natural test for our theory.  相似文献   

4.
We present an analysis of interactions among neurons in stimulus-driven networks that is designed to control for effects from unmeasured neurons. This work builds on previous connectivity analyses that assumed connectivity strength to be constant with respect to the stimulus. Since unmeasured neuron activity can modulate with the stimulus, the effective strength of common input connections from such hidden neurons can also modulate with the stimulus. By explicitly accounting for the resulting stimulus-dependence of effective interactions among measured neurons, we are able to remove ambiguity in the classification of causal interactions that resulted from classification errors in the previous analyses. In this way, we can more reliably distinguish causal connections among measured neurons from common input connections that arise from hidden network nodes. The approach is derived in a general mathematical framework that can be applied to other types of networks. We illustrate the effects of stimulus-dependent connectivity estimates with simulations of neurons responding to a visual stimulus. This research was supported by the National Science Foundation grants DMS-0415409 and DMS-0748417.  相似文献   

5.
Information about time-dependent sensory stimuli is encoded by the spike trains of neurons. Here we consider a population of uncoupled but noisy neurons (each subject to some intrinsic noise) that are driven by a common broadband signal. We ask specifically how much information is encoded in the synchronous activity of the population and how this information transfer is distributed with respect to frequency bands. In order to obtain some insight into the mechanism of information filtering effects found previously in the literature, we develop a mathematical framework to calculate the coherence of the synchronous output with the common stimulus for populations of simple neuron models. Within this frame, the synchronous activity is treated as the product of filtered versions of the spike trains of a subset of neurons. We compare our results for the simple cases of (1) a Poisson neuron with a rate modulation and (2) an LIF neuron with intrinsic white current noise and a current stimulus. For the Poisson neuron, formulas are particularly simple but show only a low-pass behavior of the coherence of synchronous activity. For the LIF model, in contrast, the coherence function of the synchronous activity shows a clear peak at high frequencies, comparable to recent experimental findings. We uncover the mechanism for this shift in the maximum of the coherence and discuss some biological implications of our findings.  相似文献   

6.
In this paper, we report on the synchronization of a pacemaker neuronal ensemble constituted of an AB neuron electrically coupled to two PD neurons. By the virtue of this electrical coupling, they can fire synchronous bursts of action potential. An external master neuron is used to induce to the whole system the desired dynamics, via a nonlinear controller. Such controller is obtained by a combination of sliding mode and feedback control. The proposed controller is able to offset uncertainties in the synchronized systems. We show how noise affects the synchronization of the pacemaker neuronal ensemble, and briefly discuss its potential benefits in our synchronization scheme. An extended Hindmarsh–Rose neuronal model is used to represent a single cell dynamic of the network. Numerical simulations and Pspice implementation of the synchronization scheme are presented. We found that, the proposed controller reduces the stochastic resonance of the network when its gain increases.  相似文献   

7.
We explore a computationally efficient method of simulating realistic networks of neurons introduced by Knight, Manin, and Sirovich (1996) in which integrate-and-fire neurons are grouped into large populations of similar neurons. For each population, we form a probability density that represents the distribution of neurons over all possible states. The populations are coupled via stochastic synapses in which the conductance of a neuron is modulated according to the firing rates of its presynaptic populations. The evolution equation for each of these probability densities is a partial differential-integral equation, which we solve numerically. Results obtained for several example networks are tested against conventional computations for groups of individual neurons.We apply this approach to modeling orientation tuning in the visual cortex. Our population density model is based on the recurrent feedback model of a hypercolumn in cat visual cortex of Somers et al. (1995). We simulate the response to oriented flashed bars. As in the Somers model, a weak orientation bias provided by feed-forward lateral geniculate input is transformed by intracortical circuitry into sharper orientation tuning that is independent of stimulus contrast.The population density approach appears to be a viable method for simulating large neural networks. Its computational efficiency overcomes some of the restrictions imposed by computation time in individual neuron simulations, allowing one to build more complex networks and to explore parameter space more easily. The method produces smooth rate functions with one pass of the stimulus and does not require signal averaging. At the same time, this model captures the dynamics of single-neuron activity that are missed in simple firing-rate models.  相似文献   

8.
Phase response curves (PRCs) have been widely used to study synchronization in neural circuits comprised of pacemaking neurons. They describe how the timing of the next spike in a given spontaneously firing neuron is affected by the phase at which an input from another neuron is received. Here we study two reciprocally coupled clusters of pulse coupled oscillatory neurons. The neurons within each cluster are presumed to be identical and identically pulse coupled, but not necessarily identical to those in the other cluster. We investigate a two cluster solution in which all oscillators are synchronized within each cluster, but in which the two clusters are phase locked at nonzero phase with each other. Intuitively, one might expect this solution to be stable only when synchrony within each isolated cluster is stable, but this is not the case. We prove rigorously the stability of the two cluster solution and show how reciprocal coupling can stabilize synchrony within clusters that cannot synchronize in isolation. These stability results for the two cluster solution suggest a mechanism by which reciprocal coupling between brain regions can induce local synchronization via the network feedback loop.  相似文献   

9.
In the last decade dendrites of cortical neurons have been shown to nonlinearly combine synaptic inputs by evoking local dendritic spikes. It has been suggested that these nonlinearities raise the computational power of a single neuron, making it comparable to a 2-layer network of point neurons. But how these nonlinearities can be incorporated into the synaptic plasticity to optimally support learning remains unclear. We present a theoretically derived synaptic plasticity rule for supervised and reinforcement learning that depends on the timing of the presynaptic, the dendritic and the postsynaptic spikes. For supervised learning, the rule can be seen as a biological version of the classical error-backpropagation algorithm applied to the dendritic case. When modulated by a delayed reward signal, the same plasticity is shown to maximize the expected reward in reinforcement learning for various coding scenarios. Our framework makes specific experimental predictions and highlights the unique advantage of active dendrites for implementing powerful synaptic plasticity rules that have access to downstream information via backpropagation of action potentials.  相似文献   

10.
The mechanisms with which neurons communicate with the vasculature to increase blood flow, termed neurovascular coupling is still unclear primarily due to the complex interactions between many parameters and the difficulty in accessing, monitoring and measuring them in the highly heterogeneous brain. Hence a solid theoretical framework based on existing experimental knowledge is necessary to study the relation between neural activity, the associated vasoactive factors released and their effects on the vasculature. Such a framework should also be related to experimental data so that it can be validated against repetitive experiments and generate verifiable hypothesis. We have developed a mathematical model which describes a signaling mechanism of neurovascular coupling with a model of pyramidal neuron and its corresponding fMRI BOLD response. In the first part of two papers we describe the integration of the neurovascular coupling unit extended to include a complex neuron model, which includes the important Na/K ATPase pump, with a model that provides a BOLD signal taking its input from the cerebral blood flow and the metabolic rate of oxygen consumption. We show that this produces a viable signal in terms of initial dip, positive and negative BOLD signals.  相似文献   

11.
Many inhibitory rhythmic networks produce activity in a range of frequencies. The relative phase of activity between neurons in these networks is often a determinant of the network output. This relative phase is determined by the interaction between synaptic inputs to the neurons and their intrinsic properties. We show, in a simplified network consisting of an oscillator inhibiting a follower neuron, how the interaction between synaptic depression and a transient potassium current in the follower neuron determines the activity phase of this neuron. We derive a mathematical expression to determine at what phase of the oscillation the follower neuron becomes active. This expression can be used to understand which parameters determine the phase of activity of the follower as the frequency of the oscillator is changed. We show that in the presence of synaptic depression, there can be three distinct frequency intervals, in which the phase of the follower neuron is determined by different sets of parameters. Alternatively, when the synapse is not depressing, only one set of parameters determines the phase of activity at all frequencies.  相似文献   

12.
The transient potassium A-current is present in most neurons and plays an important role in determining the timing of action potentials. We examine the role of the A-current in the activity phase of a follower neuron in a rhythmic feed-forward inhibitory network with a reduced three-variable model and conduct experiments to verify the usefulness of our model. Using geometric analysis of dynamical systems, we explore the factors that determine the onset of activity in a follower neuron following release from inhibition. We first analyze the behavior of the follower neuron in a single cycle and find that the phase plane structure of the model can be used to predict the potential behaviors of the follower neuron following release from inhibition. We show that, depending on the relative scales of the inactivation time constant of the A-current and the time constant of the recovery variable, the follower neuron may or may not reach its active state following inhibition. Our simple model is used to derive a recursive set of equations to predict the contribution of the A-current parameters in determining the activity phase of a follower neuron as a function of the duration and frequency of the inhibitory input it receives. These equations can be used to demonstrate the dependence of activity phase on the period and duty cycle of the periodic inhibition, as seen by comparing the predictions of the model with the activity of the pyloric constrictor (PY) neurons in the crustacean pyloric network.  相似文献   

13.
What is the role of higher-order spike correlations for neuronal information processing? Common data analysis methods to address this question are devised for the application to spike recordings from multiple single neurons. Here, we present a new method which evaluates the subthreshold membrane potential fluctuations of one neuron, and infers higher-order correlations among the neurons that constitute its presynaptic population. This has two important advantages: Very large populations of up to several thousands of neurons can be studied, and the spike sorting is obsolete. Moreover, this new approach truly emphasizes the functional aspects of higher-order statistics, since we infer exactly those correlations which are seen by a neuron. Our approach is to represent the subthreshold membrane potential fluctuations as presynaptic activity filtered with a fixed kernel, as it would be the case for a leaky integrator neuron model. This allows us to adapt the recently proposed method CuBIC (cumulant based inference of higher-order correlations from the population spike count; Staude et al., J Comput Neurosci 29(1–2):327–350, 2010c) with which the maximal order of correlation can be inferred. By numerical simulation we show that our new method is reasonably sensitive to weak higher-order correlations, and that only short stretches of membrane potential are required for their reliable inference. Finally, we demonstrate its remarkable robustness against violations of the simplifying assumptions made for its construction, and discuss how it can be employed to analyze in vivo intracellular recordings of membrane potentials.  相似文献   

14.
Gene switching and the stability of odorant receptor gene choice   总被引:9,自引:0,他引:9  
  相似文献   

15.
Neurons in sensory systems can represent information not only by their firing rate, but also by the precise timing of individual spikes. For example, certain retinal ganglion cells, first identified in the salamander, encode the spatial structure of a new image by their first-spike latencies. Here we explore how this temporal code can be used by downstream neural circuits for computing complex features of the image that are not available from the signals of individual ganglion cells. To this end, we feed the experimentally observed spike trains from a population of retinal ganglion cells to an integrate-and-fire model of post-synaptic integration. The synaptic weights of this integration are tuned according to the recently introduced tempotron learning rule. We find that this model neuron can perform complex visual detection tasks in a single synaptic stage that would require multiple stages for neurons operating instead on neural spike counts. Furthermore, the model computes rapidly, using only a single spike per afferent, and can signal its decision in turn by just a single spike. Extending these analyses to large ensembles of simulated retinal signals, we show that the model can detect the orientation of a visual pattern independent of its phase, an operation thought to be one of the primitives in early visual processing. We analyze how these computations work and compare the performance of this model to other schemes for reading out spike-timing information. These results demonstrate that the retina formats spatial information into temporal spike sequences in a way that favors computation in the time domain. Moreover, complex image analysis can be achieved already by a simple integrate-and-fire model neuron, emphasizing the power and plausibility of rapid neural computing with spike times.  相似文献   

16.
Spike timing is believed to be a key factor in sensory information encoding and computations performed by the neurons and neuronal circuits. However, the considerable noise and variability, arising from the inherently stochastic mechanisms that exist in the neurons and the synapses, degrade spike timing precision. Computational modeling can help decipher the mechanisms utilized by the neuronal circuits in order to regulate timing precision. In this paper, we utilize semi-analytical techniques, which were adapted from previously developed methods for electronic circuits, for the stochastic characterization of neuronal circuits. These techniques, which are orders of magnitude faster than traditional Monte Carlo type simulations, can be used to directly compute the spike timing jitter variance, power spectral densities, correlation functions, and other stochastic characterizations of neuronal circuit operation. We consider three distinct neuronal circuit motifs: Feedback inhibition, synaptic integration, and synaptic coupling. First, we show that both the spike timing precision and the energy efficiency of a spiking neuron are improved with feedback inhibition. We unveil the underlying mechanism through which this is achieved. Then, we demonstrate that a neuron can improve on the timing precision of its synaptic inputs, coming from multiple sources, via synaptic integration: The phase of the output spikes of the integrator neuron has the same variance as that of the sample average of the phases of its inputs. Finally, we reveal that weak synaptic coupling among neurons, in a fully connected network, enables them to behave like a single neuron with a larger membrane area, resulting in an improvement in the timing precision through cooperation.  相似文献   

17.
The dynamics of three mutually coupled cortical neurons with time delays in the coupling are explored numerically and analytically. The neurons are coupled in a line, with the middle neuron sending a somewhat stronger projection to the outer neurons than the feedback it receives, to model for instance the relay of a signal from primary to higher cortical areas. For a given coupling architecture, the delays introduce correlations in the time series at the time-scale of the delay. It was found that the middle neuron leads the outer ones by the delay time, while the outer neurons are synchronized with zero lag times. Synchronization is found to be highly dependent on the synaptic time constant, with faster synapses increasing both the degree of synchronization and the firing rate. Analysis shows that pre-synaptic input during the inter-spike interval stabilizes the synchronous state, even for arbitrarily weak coupling, and independent of the initial phase. The finding may be of significance to synchronization of large groups of cells in the cortex that are spatially distanced from each other.  相似文献   

18.
Recent evidence suggests that the cyclic nucleotides play a central role in the intracellular processing of neural signals. The dynamics of this system may be seen as a realization of the enzymatic neuron model. Enzymatic neurons are formal neurons which map binary afferent signals into patterns of excitation across an abstract membrane. The distribution of enzyme-like elements called excitases enables a set of local threshold functions to determine the firing activity of the neuron. This paper analyzes the basic properties of enzymatic neurons in a simple continuous-time framework, and shows how they may be presented as reaction-diffusion networks which model the cyclic nucleotide system. We present the results of computer simulations of this neuron and discuss its implications for selectional learning and its relation to conventional two-factor systems. One fundamental property of the reaction-diffusion neuron is its so-called “double-dynamics” property; examination of this property and its contribution to the computing power of the neuron provides some insight into the obscure relation between microscopic and macroscopic models of computation.  相似文献   

19.
This is the second of two papers in which we study a mathematical model of cytoskeleton-induced neuron death. Recent evidence indicates that aggravated assembly or destruction of the cytoskeleton can trigger programmed death in neurons, by mechanisms as yet poorly understood. In our model, assembly control of the neuronal cytoskeleton interacts with both cellular stress levels and cytosolic free radical concentrations to trigger neurodegeneration. This trigger mechanism is further modulated by a diffusible toxic factor released from dying neurons. In the companion report we established that the model relates the observed general patterns of neuron decline to specific scales of cytoskeleton reorganization and cell-cell interaction strength. In this paper we study the transit of neurons through states intermediate between initial viability and cell death in our model. We find that the stochastic flow of neuron fate, from viability to cell death, self-organizes into two distinct temporal phases. There is a rapid relaxation of the initial neuron population to a more disordered phase that is long-lived, or metastable, with respect to the time scales of change in single cells. Strikingly, cellular egress from this metastable phase follows the one-hit kinetic pattern of exponential decline now established as a principal hallmark of cell death in neurodegenerative disorders. Intermediate state metastability may therefore be an important element in the systems biology of one-hit neurodegeneration.  相似文献   

20.
The pteropod mollusc Clione limacina is a highly specialized carnivore which feeds on shelled pteropods and uses, for their capture, three pairs of oral appendages, called buccal cones. Contact with the prey induces rapid eversion of buccal cones, which then become tentacle-like and grasp the shell of the prey. In the previous paper, a large group of electrically coupled, normally silent cells (A motoneurons) has been described in the cerebral ganglia of Clione. Activation of A neurons induces opening of oral skin folds and extrusion of the buccal cones. The present study continues the analysis of the electrical properties of A motoneurons.Brief intracellular stimulation of an A neuron can produce prolonged firing (afterdischarge), lasting up to 40 s, in the entire population of A neurons. Afterdischarge activity is based on an afterdepolarization evoked by an initial strong burst of A neuron spikes. The data suggest that this afterdepolarization represents excitatory synaptic input from unidentified neurons which in turn receive excitatory inputs from A neurons, thus organizing positive feedback. The main functional role of this positive feedback is the spread and synchronization of spike activity among all A neurons in the population. In addition, it serves to transform a brief excitatory input to A neurons into their prolonged and stable firing, which is required during certain phases of feeding behavior in Clione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号