首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, pyrolysis–molecular beam mass spectrometry analysis coupled with principal components analysis and 13C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.  相似文献   

2.
The changes induced by thermal modification in the chemical structure of spruce [Picea abies (L.) Karst.], birch (Betula pendula), aspen (Populus tremula) and oak (Quercus robur) were studied by 13C CPMAS NMR spectroscopy. Spruce, birch and aspen were thermally modified at 195 °C and oak at 160 °C, under steam, according to an industrial-scale heat treatment process. In both hard- and softwood samples, 13C CPMAS NMR measurements revealed a degradation of less ordered carbohydrates (i.e. hemicelluloses and amorphous cellulose) in the thermally modified wood, which resulted in an increase in the cellulose crystallinity. Furthermore, thermal modification induced changes in the lignin structure by a cleavage of the β-O-4 linkages. In the softwood lignin, a decrease also occurred in the methoxyl group content leading to a more condensed lignin structure.  相似文献   

3.
The occurrence of covalent bonds between residual lignin and polysaccharides in birch and pine kraft pulps was investigated by specific enzymatic treatments. Pure enzymes degrading cellulose, xylan and mannan were used both separately and in combination. Comparison of the molar masses of polysaccharides and lignin in the orginal pulps and in the residual pulps after enzymatic treatments showed that residual lignin in birch kraft pulp is linked at least to xylan. A minor portion may also be linked to cellulose. In pine kraft pulp some of the residual lignin appears to be linked to cellulose, glucomannan and xylan. The linkages between lignin and cellulose and hemicelluloses may be either native or formed during pulp processing. The results also provided new information on the synergistic action of cellulose- and hemicellulose-degrading enzymes on pulp fibres. The synergism appears to be mainly due to the structure of the pulp fibres, with different layers of cellulose sheets, hemicelluloses and lignin. On the other hand the results also provided information about fibre structure. The degradation of xylan clearly enhanced the action of enzymes on cellulose, suggesting that xylan partially covers the cellulose. A similar phenomenon was not observed in the simultaneous hydrolysis of glucomannan and cellulose. However, the results suggest that glucomannan does interact with cellulose, possibly by non-covalent linkages. Received: 8 July 1998 / Received revision: 7 October 1998 / Accepted: 11 October 1998  相似文献   

4.
This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.  相似文献   

5.
6.
Hoffmann B  Chabbert B  Monties B  Speck T 《Planta》2003,217(1):32-40
Mechanical and chemical properties as well as microfibril angles of wood tissues from different ontogenetic stages are determined for the neotropical lianas Bauhinia guianensis and Condylocarpon guianense. The mechanical properties include the elastic moduli under bending and under dynamic torsion. The chemical analyses cover (i) the content of cellulose, lignin and hemicelluloses fractions, (ii) the monomeric composition of the uncondensed lignin, and (iii) the composition of the hemicelluloses with respect to neutral monosaccharides. By comparing the wood properties of these lianas with the corresponding properties of wood from self-supporting deciduous trees, common characteristics and differences are revealed. Additionally, the changes in the lignin and polysaccharides fractions as well as the variations in microfibril orientation that occur during ontogeny of the two liana species are discussed with regard to their implications for the mechanical properties of wood.  相似文献   

7.
Hänninen T  Kontturi E  Vuorinen T 《Phytochemistry》2011,72(14-15):1889-1895
Wood cell wall consists of several structural components, such as cellulose, hemicelluloses and lignin, whose concentrations vary throughout the cell wall. It is a composite where semicrystalline cellulose fibrils, acting as reinforcement, are bound together by amorphous hemicelluloses and lignin matrix. Understanding the distribution of these components and their functions within the cell wall can provide useful information on the biosynthesis of trees. Raman imaging enables us to study chemistry of cell wall without altering the structure by staining the sample or fractionating it. Raman imaging has been used to analyze distributions of lignin and cellulose, as well as the functional groups of lignin in wood. In our study, we observed the distribution of cellulose and lignin, as well as the amount of coniferyl alcohol and aldehyde groups compared to the total amount of lignin in pine (Pinus sylvestris) and spruce (Picea abies) wood samples. No significant differences could be seen in lignin and cellulose distribution between these samples, while clear distinction was observed in the distribution of coniferyl alcohols and coniferyl aldehyde in them. These results could provide valuable insight on how two similar wood species control biosynthesis of lignin differently during the differentiation of cell wall.  相似文献   

8.
Ozonation has been considered as a method for the pretreatment of plant biomass to obtain cellulose and monosaccharides. Ozone consumption by aspen wood with various moisture contents has been investigated. We have considered the gradual transformation of the substrate: wood to ozonated wood to cellulose-containing product (CP) to holocelluloze (HC) and to cellulose. Yields of ozonated wood (OW), the (CP), water-soluble ozonation products, HC, and cellulose have been determined. The lignin content in the CP has been estimated. Both HC and cellulose samples have been studied by IR spectroscopy. The degree of polymerization and molecular mass distribution of cellulose obtained from ozonated wood have been determined. It has been shown that wood destruction by ozone is accompanied by degradation of lignin, hemicelluloses, and cellulose.It has been found that physicochemical properties of cellulose obtained from ozonated wood can be regulated by the variation of the initial moisture content in the substrate. Both molecular ozone and radical species, which are generated in the course of ozone reactions with water present in the substrate structure, participate in wood destruction.  相似文献   

9.
This work provides an assessment on the fractionation of Eucalyptus globulus wood by sequential stages of autohydrolysis (to cause the solubilization of hemicelluloses) and organosolv pulping (to dissolve lignin, leaving solids enriched in cellulose). With this approach, valuable products (hemicellulose-derived saccharides, sulphur-free lignin fragments and cellulosic substrates with low contents of residual hemicelluloses) are obtained in separate streams, according to the biomass refinery approach. Autohydrolysis was carried out under optimized operational conditions, and organosolv pulping was performed using uncatalyzed ethanol-water solutions. The effects of the most influential operational variables (autohydrolysis severity, delignification temperature and ethanol concentration in the organosolv stage) on solid yield, solid composition, cellulose susceptibility and recovery of the various fractions was assessed using statistical methods, which enabled the identification of the most favourable operational conditions.  相似文献   

10.
In the biological pretreatment process, white-rot fungi are mostly used to degrade lignin and carbohydrates in lignocellulosic biomass. In this study, water-soluble hemicelluloses were recovered from birch wood (Betula alnoides) decayed by white-rot fungi (Ganoderma lucidum C7016) for different durations up to 16 weeks. Accordingly, the dimethyl sulfoxide (DMSO)-soluble hemicelluloses were isolated from the untreated birch wood as a comparison. Results showed that the fungal-degraded polysaccharides were acidic hemicelluloses having a high content of uronic acids ranging from 20.6 to 22.5 %. Gel permeation chromatography analysis demonstrated that the recovered water-soluble hemicelluloses had a lower average molecular weight (M w, 15,990–27,560 g?mol?1) than that of the DMSO-soluble hemicelluloses (M w , 33,960 g?mol?1). Fourier transform infrared spectroscopy, scanning electron microscopy, one- and two-dimensional nuclear magnetic resonance spectroscopy also revealed significantly changes between those of fungal degraded and DMSO-soluble hemicelluloses. It was proposed that the hemicelluloses with low molecular weights were easily removed from wood by fungal degradation. This research revealed the changes of hemicelluloses in fungal degradation in the natural environment, which may enable the exploration of novel methods in bioconversion of lignocellulosic biomass for the production of biofuels and biopolymers, in addition to the development of new and better ways to protect wood from biodegradation by microorganisms.  相似文献   

11.
Switchable ionic liquids (SILs) made from alcohols, either hexanol or butanol, and CO2 together with an amidine (1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU)) were investigated as dissolution/fractionation solvents for wood material. Both native spruce (Picea abies), and pre-extracted spruce were treated with either butanol SIL (SIL1) or hexanol SIL (SIL2) for 5 days at 55 °C under normal pressure. The SILs were formed by bubbling CO2 through an equimolar mixture of either 1-hexanol or 1-butanol and DBU. The viscosity of the mixture increased from 7.1 mPa s to 2980 mPa s for SIL2 and 5.1 to 1600 mPa s for SIL1. Melting points of the SILs 1 and 2 were at 8 and 14 °C, respectively. After the treatment time (5 days), the undissolved fraction contained 38 wt.% less hemicelluloses compared to native spruce. There was an increase in the glucose content of the milled spruce treated with both SILs, since the milling step reduced the cellulose crystallinity of the wood and facilitated an easier SIL access into the wood. The solvents were very neutral in terms of lignin removal. Consequently, only about 2% of the lignin was removed from native wood. Moreover, a priori removal of the wood extractives did not influence the lignin removal.  相似文献   

12.
Seven wheat straw cellulose preparations were isolated by a two-stage acidic organosolv treatment followed by cyanamide activated hydrogen peroxide bleaching. The effects of concentration of acetic and formic acids on the yield of cellulose and degradation of lignin and non-cellulose polysaccharides were investigated. Organic acids were more effective than alcohols on the degradation of lignin and hemicelluloses. Formic acid/acetic acid/water (30/60/10, v/v/v) system was found to be the most effective in delignification and removal of non-cellulose polysaccharides from the straw and did not have any undesirable effects on cellulose properties such as its intrinsic viscosity. In this case, the treatment removed 94.1% of the original lignin and 76.5% of the original hemicelluloses using 0.1% HCl as a catalyst at 85 °C for 4 h. Cyanamide activated hydrogen peroxide bleaching degraded substantial amounts of residual hemicelluloses and lignin, produced the cellulose samples having a relatively high purity. Under a best condition, a cellulose relatively free of lignin (0.7%) and with intrinsic viscosity of 393 ml g−1 and favourable molar mass (213,940 g mol−1) was obtained. Both unbleached and bleached cellulose preparations were further characterised by FT-IR and CP/MAS 13C NMR spectroscopy, and thermal stability.  相似文献   

13.
Trees withstand wind and snow loads by synthesising wood that varies greatly in mechanical properties: flexible in twigs and in the stem of the sapling, and rigid in the outer part of the mature stem. The ‘molecular Velcro’ model of Keckes et al. [2003. Cell-wall recovery after irreversible deformation of wood. Nat. Mater. 2, 810–814] permits the simulation of the tensile properties of water-saturated wood as found in living trees. A basic feature of this model is the presence of non-covalent interactions between hemicellulose chains attached to adjacent cellulose microfibrils, which are disrupted above a threshold level of interfibrillar shear. However, other evidence does not confirm the importance of hemicellulose–hemicellulose association in the cohesion of the interfibrillar matrix. Here, we present an alternative model in which hemicellulose chains bridging continuously from one microfibril aggregate (macrofibril) to the next provide most of the cohesion. We show that such hemicellulose bridges exist and that the stripping of the bridging chains from the cellulose surfaces under the tensile stress component normal to the macrofibrils can provide an alternative triggering mechanism for shear deformation between one macrofibril and the next. When one macrofibril then slides past another, a domain of the wood cell wall can extend but simultaneously it twists until the spacing between macrofibrils is reduced again and contact through hemicelluloses bridges is restored. Overall deformation therefore takes place through a series of local stick–slip events involving temporary twisting of small domains within the wood cell wall. Modelled load–deformation curves for this modified ‘molecular Velcro’ model are similar, although not identical, to those for the original model. However, the mechanism is different and more consistent with current views of the structure of wood cell walls, providing a framework within which the developmental control of rigidity in wood synthesised in different parts of a tree may be considered.  相似文献   

14.
Lignin holds tremendous potential as a renewable feedstock for upgrading to a number of high-value chemicals and products that are derived from the petroleum industry at present. Since lignin makes up a significant fraction of lignocellulosic biomass, co-utilization of lignin in addition to cellulose and hemicelluloses is vital to the economic viability of cellulosic biorefineries. The recalcitrant nature of lignin, originated from the molecule's compositional and structural heterogeneity, however, poses great challenges toward effective and selective lignin depolymerization and valorization. Ionic liquid (IL) is a powerful solvent that has demonstrated high efficiency in fractionating lignocellulosic biomass into sugar streams and a lignin stream of reduced molecular weight. Compared to thermochemical methods, biological lignin deconstruction takes place at mild temperature and pressure while product selectivity can be potentially improved via the specificity of biocatalysts (lignin degrading enzymes, LDEs). This review focuses on a lignin valorization strategy by harnessing the biomass fractionating capabilities of ILs and the substrate and product selectivity of LDEs. Recent advances in elucidating enzyme-IL interactions as well as strategies for improving enzyme activity in IL are discussed, with specific emphases on biocompatible ILs, thermostable and IL-tolerant enzymes, enzyme immobilization, and surface charge engineering. Also reviewed is the protein engineering toolsets (directed evolution and rational design) to improve the biocatalysts' activity, stability and product selectivity in IL systems. The alliance between IL and LDEs offers a great opportunity for developing a biocatalytic route for lignin valorization.  相似文献   

15.
Effects of elevated carbon dioxide (CO2) and ozone (O3) on wood properties of two initially 7‐year‐old silver birch (Betula pendula Roth) clones were studied after a fumigation during three growing seasons. Forty trees, representing two fast‐growing clones (4 and 80), were exposed in open‐top chambers to the following treatments: outside control, chamber control, 2 × ambient [CO2], 2 × ambient [O3] and 2 × ambient [CO2]+2 × ambient [O3]. After the 3‐year exposure, the trees were felled and wood properties were analyzed. The treatments affected both stem wood structure and chemistry. Elevated [CO2] increased annual ring width, and concentrations of extractives and starch, and decreased concentrations of cellulose and gravimetric lignin. Elevated O3 decreased vessel percentage and increased cell wall percentage in clone 80. In vessel percentage, elevated CO2 ameliorated the O3‐induced decrease. In clone 4, elevated O3 decreased nitrogen concentration of wood. The two clones had different wood properties. In clone 4, the concentrations of extractives, starch, soluble sugars and nitrogen were greater than in clone 80, while in clone 80 the concentrations of cellulose and acid‐soluble lignin were higher. Clone 4 also had slightly longer fibres, greater vessel lumen diameter and vessel percentage than clone 80, while in clone 80 cell wall percentage was greater. Our results show that wood properties of young silver birch trees were altered under elevated CO2 in both clones, whereas the effects of O3 depended on clone.  相似文献   

16.
Relatively poor SCP production (4.2 mg/L h) was obtained using C. cellulolyticum and ground aspen wood treated with steam at atmospheric pressure for 1 h. The percentage of protein in the final product increased to 21.4% at a specific growth rate of 0.15 h?1 when the wood sample was treated with steam at a higher pressure (280 psig for 4 min) according to the "Stake" process. Alkali treatment (10% and 15% w/w at 121°C for 30 min), known to solubilize hemicelluloses and some of the lignin, gave intermediate results. More complete delignification of wood using NaClO2 increased the protein composition in the final product to 37.9%, at a specific growth rate of 0.19 h?1. Cellulose utilization was lowest (12.4%) in the case of the wood treated with steam at atmospheric pressure; it was higher at 75.3 and 78.5% for wood treated with NaOH at 10 and 15% w/w levels, respectively. The cellulose utilization was highest (90%) for wood treated with NaClO2.  相似文献   

17.
Abaca fibre polysaccharides were fractionated into water soluble, pectic, 1% NaOH soluble, hemicellulosic and cellulose fractions by extraction with hot water, dilute hydrochloric acid (pH 1.6), aqueous 1% NaOH and 17.5% NaOH, respectively. Cellulose (60.4–63.6%) and hemicelluloses (20.8%) were the major polysaccharides in abaca fibres. The hot water soluble polysaccharides contained noticeable amounts of pectic substances and a large proportion of neutral polysaccharides. The pectic polysaccharide preparation was enriched in both galacturonic acid and neutral sugars, including xylose, glucose, galactose, arabinose, and rhamnose. Extraction of the fibre with aqueous 1% NaOH produced the hemicellulose–lignin complex, which was enriched in xylose and, to a lesser extent, glucose-, arabinose- and galactose-containing polysaccharides, together with 7.6% associated lignin. Further extraction of the delignified fibre residue with aqueous 17.5%. NaOH removed the hemicellulose fractions, which were strongly enriched in xylose-containing polysaccharides. Besides ferulic and p-coumaric acids, six other phenolic monomers were also detected in the mixtures of alkaline nitrobenzene oxidation of associated lignin in all the polysaccharide fractions. The content of bound lignin in water soluble, pectic, and 1% NaOH soluble polysaccharides (Fractions 1, 2, and 3), isolated directly from the lignified fibres, was 12 times that of the hemicellulosic preparations (Fractions 4 and 5) isolated from the delignified fibre residues.  相似文献   

18.
The ultramicroscopic composition and supramolecular structure of wood matrix were investigated by methods of electron and atomic force microscopy (AFM). New data on specific features of the composition and cell wall structure of Juniper wood (Juniperus communis L.) were obtained. Native lignin was found to be water soluble. It was also shown that lignin does not constitute a continuous matrix between cellulose fibrils, but is deposited as spherical particles.  相似文献   

19.
Summary A strain of Phanerochaete chrysosporium, designated strain K-3, was isolated from a monosporous conidiospore culture of Sporotrichum pulverulentum. This strain produces fruit bodies with only four sterigmata. From basidiospores of this culture, the homokaryotic strain 31 with high lignin degrading capacity was selected and subjected to ultraviolet irradiation to obtain cellulase deficient (Cel-) strains. By cross-breeding one of these Cel- variants with selected Cel+ homokaryotic strains from K-3 with high lignin degrading capacity, new Cel- mutants were isolated which exceeded K-3 in their capacity to degrade lignin.The Cel- strains were totally incapable of degrading cellulose but were able to degrade xylan. Evolution of 14CO2 from 14C-ring-labelled synthetic lignin a dehydrogenation polymerizate (DHP) was used to screen for strains with high lignin degrading capacity.Studies of weight loss on birch and spruce wood revealed that the weight losses caused by strain K-3 exceeded, in all cases, those caused by the Cel- strains. However, higher lignin losses in birch wood were obtained with several of the Cel- strains than with the K-3 strain. After 2 weeks, one strain caused a lignin loss in birch wood of 21% of the initial amount of lignin, while with another strain there was, after 3 weeks incubation, a 28.5% decrease in the lignin content.  相似文献   

20.
Characteristics of degraded cellulose obtained from steam-exploded wheat straw   总被引:13,自引:0,他引:13  
The isolation of cellulose from wheat straw was studied using a two-stage process based on steam explosion pre-treatment followed by alkaline peroxide post-treatment. Straw was steamed at 200 degrees C, 15 bar for 10 and 33 min, and 220 degrees C, 22 bar for 3, 5 and 8 min with a solid to liquid ratio of 2:1 (w/w) and 220 degrees C, 22 bar for 5 min with a solid to liquid ratio of 10:1, respectively. The steamed straw was washed with hot water to yield a solution rich in hemicelluloses-derived mono- and oligosaccharides and gave 61.3%, 60.2%, 66.2%, 63.1%, 60.3% and 61.3% of the straw residue, respectively. The washed fibre was delignified and bleached by 2% H2O2 at 50 degrees C for 5 h under pH 11.5, which yielded 34.9%, 32.6%, 40.0%, 36.9%, 30.9% and 36.1% (% dry wheat straw) of the cellulose preparation, respectively. The optimum cellulose yield (40.0%) was obtained when the steam explosion pre-treatment was performed at 220 degrees C, 22 bar for 3 min with a solid to liquid ratio of 2:1, in which the cellulose fraction obtained had a viscosity average degree of polymerisation of 587 and contained 14.6% hemicelluloses and 1.2% klason lignin. The steam explosion pre-treatment led to a significant loss in hemicelluloses and alkaline peroxide post-treatment resulted in substantial dissolution of lignin and an increase in cellulose crystallinity. The six isolated cellulose samples were further characterised by FT-IR and 13C-CP/MAS NMR spectroscopy and thermal analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号