首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 328 毫秒
1.
In this work, pyrolysis–molecular beam mass spectrometry analysis coupled with principal components analysis and 13C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.  相似文献   

2.
The changes induced by thermal modification in the chemical structure of spruce [Picea abies (L.) Karst.], birch (Betula pendula), aspen (Populus tremula) and oak (Quercus robur) were studied by 13C CPMAS NMR spectroscopy. Spruce, birch and aspen were thermally modified at 195 °C and oak at 160 °C, under steam, according to an industrial-scale heat treatment process. In both hard- and softwood samples, 13C CPMAS NMR measurements revealed a degradation of less ordered carbohydrates (i.e. hemicelluloses and amorphous cellulose) in the thermally modified wood, which resulted in an increase in the cellulose crystallinity. Furthermore, thermal modification induced changes in the lignin structure by a cleavage of the β-O-4 linkages. In the softwood lignin, a decrease also occurred in the methoxyl group content leading to a more condensed lignin structure.  相似文献   

3.
The occurrence of covalent bonds between residual lignin and polysaccharides in birch and pine kraft pulps was investigated by specific enzymatic treatments. Pure enzymes degrading cellulose, xylan and mannan were used both separately and in combination. Comparison of the molar masses of polysaccharides and lignin in the orginal pulps and in the residual pulps after enzymatic treatments showed that residual lignin in birch kraft pulp is linked at least to xylan. A minor portion may also be linked to cellulose. In pine kraft pulp some of the residual lignin appears to be linked to cellulose, glucomannan and xylan. The linkages between lignin and cellulose and hemicelluloses may be either native or formed during pulp processing. The results also provided new information on the synergistic action of cellulose- and hemicellulose-degrading enzymes on pulp fibres. The synergism appears to be mainly due to the structure of the pulp fibres, with different layers of cellulose sheets, hemicelluloses and lignin. On the other hand the results also provided information about fibre structure. The degradation of xylan clearly enhanced the action of enzymes on cellulose, suggesting that xylan partially covers the cellulose. A similar phenomenon was not observed in the simultaneous hydrolysis of glucomannan and cellulose. However, the results suggest that glucomannan does interact with cellulose, possibly by non-covalent linkages. Received: 8 July 1998 / Received revision: 7 October 1998 / Accepted: 11 October 1998  相似文献   

4.
This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.  相似文献   

5.
6.
Hänninen T  Kontturi E  Vuorinen T 《Phytochemistry》2011,72(14-15):1889-1895
Wood cell wall consists of several structural components, such as cellulose, hemicelluloses and lignin, whose concentrations vary throughout the cell wall. It is a composite where semicrystalline cellulose fibrils, acting as reinforcement, are bound together by amorphous hemicelluloses and lignin matrix. Understanding the distribution of these components and their functions within the cell wall can provide useful information on the biosynthesis of trees. Raman imaging enables us to study chemistry of cell wall without altering the structure by staining the sample or fractionating it. Raman imaging has been used to analyze distributions of lignin and cellulose, as well as the functional groups of lignin in wood. In our study, we observed the distribution of cellulose and lignin, as well as the amount of coniferyl alcohol and aldehyde groups compared to the total amount of lignin in pine (Pinus sylvestris) and spruce (Picea abies) wood samples. No significant differences could be seen in lignin and cellulose distribution between these samples, while clear distinction was observed in the distribution of coniferyl alcohols and coniferyl aldehyde in them. These results could provide valuable insight on how two similar wood species control biosynthesis of lignin differently during the differentiation of cell wall.  相似文献   

7.
Hoffmann B  Chabbert B  Monties B  Speck T 《Planta》2003,217(1):32-40
Mechanical and chemical properties as well as microfibril angles of wood tissues from different ontogenetic stages are determined for the neotropical lianas Bauhinia guianensis and Condylocarpon guianense. The mechanical properties include the elastic moduli under bending and under dynamic torsion. The chemical analyses cover (i) the content of cellulose, lignin and hemicelluloses fractions, (ii) the monomeric composition of the uncondensed lignin, and (iii) the composition of the hemicelluloses with respect to neutral monosaccharides. By comparing the wood properties of these lianas with the corresponding properties of wood from self-supporting deciduous trees, common characteristics and differences are revealed. Additionally, the changes in the lignin and polysaccharides fractions as well as the variations in microfibril orientation that occur during ontogeny of the two liana species are discussed with regard to their implications for the mechanical properties of wood.  相似文献   

8.
Ozonation has been considered as a method for the pretreatment of plant biomass to obtain cellulose and monosaccharides. Ozone consumption by aspen wood with various moisture contents has been investigated. We have considered the gradual transformation of the substrate: wood to ozonated wood to cellulose-containing product (CP) to holocelluloze (HC) and to cellulose. Yields of ozonated wood (OW), the (CP), water-soluble ozonation products, HC, and cellulose have been determined. The lignin content in the CP has been estimated. Both HC and cellulose samples have been studied by IR spectroscopy. The degree of polymerization and molecular mass distribution of cellulose obtained from ozonated wood have been determined. It has been shown that wood destruction by ozone is accompanied by degradation of lignin, hemicelluloses, and cellulose.It has been found that physicochemical properties of cellulose obtained from ozonated wood can be regulated by the variation of the initial moisture content in the substrate. Both molecular ozone and radical species, which are generated in the course of ozone reactions with water present in the substrate structure, participate in wood destruction.  相似文献   

9.
This work provides an assessment on the fractionation of Eucalyptus globulus wood by sequential stages of autohydrolysis (to cause the solubilization of hemicelluloses) and organosolv pulping (to dissolve lignin, leaving solids enriched in cellulose). With this approach, valuable products (hemicellulose-derived saccharides, sulphur-free lignin fragments and cellulosic substrates with low contents of residual hemicelluloses) are obtained in separate streams, according to the biomass refinery approach. Autohydrolysis was carried out under optimized operational conditions, and organosolv pulping was performed using uncatalyzed ethanol-water solutions. The effects of the most influential operational variables (autohydrolysis severity, delignification temperature and ethanol concentration in the organosolv stage) on solid yield, solid composition, cellulose susceptibility and recovery of the various fractions was assessed using statistical methods, which enabled the identification of the most favourable operational conditions.  相似文献   

10.
In the biological pretreatment process, white-rot fungi are mostly used to degrade lignin and carbohydrates in lignocellulosic biomass. In this study, water-soluble hemicelluloses were recovered from birch wood (Betula alnoides) decayed by white-rot fungi (Ganoderma lucidum C7016) for different durations up to 16 weeks. Accordingly, the dimethyl sulfoxide (DMSO)-soluble hemicelluloses were isolated from the untreated birch wood as a comparison. Results showed that the fungal-degraded polysaccharides were acidic hemicelluloses having a high content of uronic acids ranging from 20.6 to 22.5 %. Gel permeation chromatography analysis demonstrated that the recovered water-soluble hemicelluloses had a lower average molecular weight (M w, 15,990–27,560 g?mol?1) than that of the DMSO-soluble hemicelluloses (M w , 33,960 g?mol?1). Fourier transform infrared spectroscopy, scanning electron microscopy, one- and two-dimensional nuclear magnetic resonance spectroscopy also revealed significantly changes between those of fungal degraded and DMSO-soluble hemicelluloses. It was proposed that the hemicelluloses with low molecular weights were easily removed from wood by fungal degradation. This research revealed the changes of hemicelluloses in fungal degradation in the natural environment, which may enable the exploration of novel methods in bioconversion of lignocellulosic biomass for the production of biofuels and biopolymers, in addition to the development of new and better ways to protect wood from biodegradation by microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号