首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 270 毫秒
1.
Sex expression (the proportions of hermaphrodite and staminate flowers produced) of the andromonoecious species Solatium hirtum is labile, and this lability of whole plant sex expression is due to labile sex expression of individual floral buds. In this paper I examine the developmental processes that underlie the differences in floral sex expression of hermaphrodite and staminate flowers of Solarium hirtum, focusing particularly on the processes responsible for the observed lability of floral sex expression. Differences in bud growth rate and relative growth of floral organs in these buds are evident at about the time of megasporocyte meiosis (11–12 days before anthesis). However, gynoecial sterility in staminate buds does not occur until just 6–7 days before anthesis. At this time, abnormalities in ovule development occur in staminate buds: the ovules begin to appear necrotic, the integumentary tapetum collapses, and the megagametophytes of many ovules cease normal development. These observations are consistent with the predictions of labile floral development.  相似文献   

2.

Background and Aims

The palm tribe Chamaedoreeae displays flowers arranged in a complex partial inflorescence called an acervulus. This type of partial inflorescence has so far not been reported elsewhere in the largest palm subfamily Arecoideae, which is traditionally characterized by flowers predominantly arranged in triads of one central female and two lateral male flowers. The ontogenetic basis of the acervulus is as yet unknown and its structural diversity throughout the genera of the Chamaedoreeae poorly recorded. This study aims to provide critical information on these aspects.

Methods

Developmental series and mature inflorescences were sampled from plants cultivated in international botanical gardens and wild populations. The main techniques employed included scanning electronic microscopy and serial anatomical sectioning of resin-embedded fragments of rachillae.

Key Results

Inflorescence ontogeny in Hyophorbe lagenicaulis demonstrates that the acervulus and the inflorescence rachilla form a condensed and cymose branching system resembling a coenosome. Syndesmy results from a combined process of rapid development and adnation, without or with reduced axis elongation. Acervulus diversity in the ten taxa of the Chamaedoreeae studied is displayed at the level of their positioning within the inflorescence, their arrangement, the number of floral buds and their sexual expression.

Conclusions

The results show that a more general definition of the type of partial inflorescence observed within the large subfamily Arecoideae would correspond to a cyme rather than to a floral triad. In spite of their common cymose architecture, the floral triad and the acervulus present differences with respect to the number and arrangement of floral buds, the superficial pattern of development and sexual expression.  相似文献   

3.
Cariceae, the largest tribe within Cyperaceae, comprises about 2000 species in five genera. Cariceae is usually considered to be distinct from other Cyperaceae by the presence of exclusively unisexual flowers and by the arrangement of the pistillate flowers in single-flowered spikelets that are enclosed by the flask-like spikelet prophyll (utricle or perigynium). The nature of several morphological features of the Cariceae inflorescence remains controversial. The staminate reproductive units, as well as earlier reported bisexual reproductive units in Schoenoxiphium have been considered to be reduced partial inflorescences, or flowers. Aims of this study are to test both interpretations, based on a floral ontogenetic investigation. Moreover, for the first time, detailed SEM micrographs are presented of the inflorescence and floral development and of bisexual flowers in Schoenoxiphium. We propose that ‘inhibition of bisexuality’ is a more robust synapomorphy in Cariceae than ‘presence of only unisexual flowers’.  相似文献   

4.

Background and Aims

Although studies have shown that pollen addition and/or removal decreases floral longevity, less attention has been paid to the relationship between reproductive costs and floral longevity. In addition, the influence of reproductive costs on floral longevity responses to pollen addition and/or removal has not yet been evaluated. Here, the orchid Cohniella ascendens is used to answer the following questions. (a) Does experimental removal of flower buds in C. ascendens increase flower longevity? (b) Does pollen addition and/or removal decrease floral longevity, and does this response depend on plant reproductive resource status?

Methods

To study the effect of reproductive costs on floral longevity 21 plants were selected from which we removed 50 % of the developing flower buds on a marked inflorescence. Another 21 plants were not manipulated (controls). One month later, one of four flowers on each marked inflorescence received one of the following pollen manipulation treatments: control, pollinia removal, pollination without pollinia removal or pollination with pollinia removal. The response variable measured was the number of days each flower remained open (i.e. longevity).

Key Results

The results showed significant flower bud removal and pollen manipulation effects on floral longevity; the interaction between these two factors was not significant. Flowers on inflorescences with previously removed flower buds remained open significantly longer than flowers on control inflorescences. On the other hand, pollinated flowers closed much faster than control and removed-pollinia flowers, the latter not closing significantly faster than control flowers, although this result was marginal.

Conclusions

The results emphasize the strong relationship between floral longevity and pollination in orchids, as well as the influence of reproductive costs on the former.Key words: Cohniella ascendens, floral longevity, flower bud removal, pollination, pollinia removal, reproductive costs  相似文献   

5.
常绿阔叶树种栲树开花物候动态及花的空间配置   总被引:16,自引:0,他引:16       下载免费PDF全文
 基于定株观测和随机枝取样法,对浙江天童常绿阔叶林内栲树(Castanopsis fargesii)的开花物候动态及其雌花、雄花的空间配置进行了研究。结果表明:在栲树的生殖枝上,并非所有的芽都分化、萌发生成花序,栲树花芽的分化和发育集中在一级生殖枝上。生殖枝上花芽的分化与该枝的空间位置密切相关。栲树花期明显晚于春季的展叶期,与叶片生长时间重叠。盛花期集中于5月下旬,约持续8 d左右,属于同步发生的花期。栲树雄花序的数量明显高于雌花序,雄花序约占花序总数的77.88%,雌花序仅占22.12%。大量雄花和花粉的存在是保证雌花接受花粉和完成受精的基础。花序在植冠层中的空间配置明显不同:在同一植冠内,向阳面和背阴面生殖枝上芽萌发成花序的比率存在明显差异(p<0.01),阳面生殖枝上顶芽萌发成花序的比率高于阴面生殖枝的比率,并且,阳面的每个生殖枝上平均花序数和雄花数量均高于阴面生殖枝,花序的分化和发育与枝系的生长发育状况有密切关系。  相似文献   

6.
Species of the palm family (Arecaceae) are remarkably diverse in their inflorescence and floral morphologies, which make them a particularly interesting group for studies of reproductive development and its evolution. Using light and scanning electron microscopy, we describe inflorescence and flower development in the African oil palm Elaeis guineensis from the initiation of the inflorescence meristem to flower maturity. In mature palms, the inflorescence develops over 2-3 years and is characterized by individual stages within which differentiation may be either relatively slow, as in the case of early inflorescence meristem development, or rapid, as in the case of flower organogenesis. The female inflorescence bears floral triads composed of single pistillate flowers flanked by two abortive staminate flowers, whereas the male inflorescence contains single functional staminate flowers. This suggests a possible evolutionary movement from an ancestral hermaphrodite inflorescence form containing fully functional floral triads to the situation of temporal dioecy observed at present. Wild type flowers are compared to those bearing an epigenetic homeotic abnormality, known as mantled, involving an alteration of the identity of the organs in the fertile and sterile androecium.  相似文献   

7.
Male plants of spinach (Spinacea oleracea L.) senesce following flowering. It has been suggested that nutrient drain by male flowers is insufficient to trigger senescence. The partitioning of radiolabelled photosynthate between vegetative and reproductive tissue was compared in male (staminate) versus female (pistillate) plants. After the start of flowering staminate plants senesce 3 weeks earlier than pistillate plants. Soon after the start of flowering, staminate plants allocated several times as much photosynthate to flowering structures as did pistillate plants. The buds of staminate flowers with developing pollen had the greatest draw of photosynthate. When the staminate plants begin to show senescence 68% of fixed C was allocated to the staminate reproductive structures. In the pistillate plants, export to the developing fruits and young flowers remained near 10% until mid-reproductive development, when it increased to 40%, declining to 27% as the plants started to senesce. These differences were also present on a sink-mass corrected basis. Flowers on staminate spinach plants develop faster than pistillate flowers and have a greater draw of photosynthate than do pistillate flowers and fruits, although for a shorter period. Pistillate plants also produce more leaf area within the inflorescence to sustain the developing fruits. The (14)C in the staminate flowers declined due to respiration, especially during pollen maturation; no such loss occurred in pistillate reproductive structures. The partitioning to the reproductive structures correlates with the greater production of floral versus vegetative tissue in staminate plants and their more rapid senescence. As at senescence the leaves still had adequate carbohydrate, the resources are clearly phloem-transported compounds other than carbohydrates. The extent of the resource redistribution to reproductive structures and away from the development of new vegetative sinks, starting very early in the reproductive phase, is sufficient to account for the triggering of senescence in the rest of the plant.  相似文献   

8.
Single gibberellin (A4+7) treatments induced the appearanceof staminate floral buds in several consecutive nodes on themain stem of genetically female cucumber (Cucumis sativus L.).The staminate buds appeared next to pistillate buds which showedvarious degrees of degeneration. Similarly, repeated GA treatmentsinduced the appearance of staminate flowers in otherwise strictlyhermaphrodite plants, next to bisexual flowers. However, thebisexual buds, unlike the pistillate ones, did not show anydeleterious effects of the GA treatment. Therefore, it is inferredthat the hormonally induced staminate buds did not develop bysexual reversion of would-be pistillate or bisexual buds, butrather, represent adventitious buds which, in normally grownfemale or hermaphrodite plants, never develop. It thus seemsthat predetermined pistillate or bisexual buds do not changeinto staminate ones, while change in the reverse direction hasbeen demonstrated in the past (at least for the gynoecious ones). The effectiveness of the GA treatment in the gynoecious plantsshowed an acropetal gradient both within the affected region,as well as along the main stem. Autoradiographic histologicalexaminations showed that the course of development of the inducedstaminate floral bud did not differ from that of normally developingbuds. (Received June 16, 1977; )  相似文献   

9.
Developmental evidence shows that the acervulus, a distinctive flower cluster found only in the chamaedoreoid group of palms, is a form of cincinnus. In Hyophorbe indica Gaertner, the unit consists of a row of sessile flowers, the upper 3–4, staminate and the basal flower, pistillate. During initiation, each new flower originates from divisions in the T2 and underlying layers of the lower right or left flank of the apex of the preceding flower. A bract subtending the first flower is evident in early stages, is displaced basipetally as the flowers are formed, but is obscured when flowers are mature. No other bracts are associated with the unit. One to two outer bundles of the vascular cylinder of the rachilla develop first to the uppermost flower. Subsequently, bundles to other flowers arise as lower branches of the first bundle and from other, often small outer bundles of the rachilla that become floral traces or produce one or more branches to a flower. Many of the bundles supplying the flowers bend sharply downward in the cortex of the rachilla, apparently reflecting the basipetal sequence of floral inception.  相似文献   

10.
The degree of sexual dimorphism in flowers and inflorescences can be evaluated early in flower development through the study of floral organ size co-variation. In the present work, the gynoecium-androecium size relationship was studied to assess the degree of sexual expression in flowers and inflorescences of the andromonoecious shrub Caesalpinia gilliesii. The co-variation pattern of floral organ sizes was compared between small and large inflorescences, under the hypothesis that inflorescence size reflected differential resource availability. Also, staminate and perfect flowers were collected from three populations and compared on the basis of gynoecium, ovule length, filament length, pollen size and number. The obtained results indicated that staminate and perfect flowers differed only in the gynoecium and ovule length, whereas filament length, pollen size, and number varied across populations. The gynoecium size was smaller and its variability was much higher in staminate than in perfect flowers, as explained by a recent hypothesis about pollinator-mediated gynoecium size selection acting upon perfect flowers. The analysis of the gynoecium-androecium size relationship during flower development, revealed a dissociation of gynoecium growth relative to other floral structures in some buds. Lower gynoecium-androecium regression slopes and smaller gynoecia length characterized smaller inflorescences, thus reflecting the fact that sexual expression was more male-biased. This trend is in agreement with a differential resource-related response at the inflorescence level, however, post-mating resource allocation and the inclusion of other modular levels may also help us to understand the variation in sexual dimorphism in this species.  相似文献   

11.
Flower-like inflorescences (pseudanthia) have fascinated botanists for a long time. They are explained as condensed inflorescences implying that the pseudanthium develops from an inflorescence meristem (IM). However, recent developmental studies identified a new form of reproductive meristem, the floral unit meristem (FUM). It differs from IMs by lacking acropetal growth and shares fractionation, expansion and autonomous space filling with flower meristems (FM). The similarity among FUMs and FMs raises the question how far flower-like heads originate from flower-like meristems. In the present paper, pseudanthium development in Davidia involucrata is investigated using scanning electron microscopy. D. involucrata has pincushion-shaped heads composed of densely aggregated, perianthless flowers and associated with two large showy bracts. Early developmental stages show a huge naked FUM. The FMs appear almost simultaneously and lack subtending bracts. With ongoing FUM expansion new space is generated which is immediately used by further FM fractionation. The heads have only staminate flowers or are andromonoecious with staminate and a single perfect flower in oblique position. All FMs lack perianth structures and fractionate a variable number of stamen primordia. The perfect FM is much larger than the staminate FMs and forms a syncarpous gynoecium with inferior ovary. Pseudanthium development in D. involucrata confirms the morphogenetic similarity to FMs as to acropetal growth limitation, meristem expansion and fractionation. It thus should not be interpreted as a condensed inflorescence, but as a flower equivalent. Furthermore as the FUM develops inside a bud, its development is considered to be influenced by mechanical pressure. The oblique position of the perfect flower, the developmental delay of the proximal flowers, and the variable number of stamens which were observed in the pseudanthium development, can be caused by mechanical pressure. Next to the Asteraceae, D. involucrata offers a further example of a pseudanthium originating from a FUM. More knowledge on FUMs is still needed to understand diversification and evolution of flower-like inflorescences.  相似文献   

12.

Background and Aims

In the sedge subfamily Mapanioideae there are considerable discrepancies between the standard trimerous monocot floral architecture expected and the complex floral and inflorescence morphologies seen. Decades of debate about whether the basic reproductive units are single flowers or pseudanthia have not resolved the question. This paper evaluates current knowledge about Mapaniid reproductive structures and presents an ontogenetic study of the Mapaniid genus Lepironia with the first floral protein expression maps for the family, localizing the products of the APETALA1/FRUITFULL-like (AP1/FUL) MADS-box genes with the aim of shedding light on this conundrum.

Methods

A range of reproductive developmental stages, from spikelet primordia through to infructescence material, were processed for anatomical and immunohistochemical analyses.

Key Results

The basic reproductive unit is subtended by a bract and possesses two prophyll-like structures, the first organs to be initiated on the primordium, which grow rapidly, enclosing two whorls of initiating leaf-like structures with intervening stamens and a central gynoecium, formed from an annular primordium. The subtending bract and prophyll-like structures possess very different morphologies from that of the internal leaf-like structures and do not show AP1/FUL-like protein localization, which is otherwise strongly localized in the internal leaf-like structures, stamens and gynoecia.

Conclusions

Results support the synanthial hypothesis as the evolutionary origin of the reproductive unit. Thus, the basic reproductive unit in Lepironia is an extremely condensed pseudanthium, of staminate flowers surrounding a central terminal pistillate female flower. Early in development the reproductive unit becomes enclosed by a split-prophyll, with the whole structure subtended by a bract.  相似文献   

13.
Sexual expression in andromonoecious species—those in which a single individual can bear both staminate and hermaphroditic flowers—may vary among reproductive events in the same plant, among individuals and across populations. This variation influences, in turn, the individual contribution of hermaphroditic plants via male and female fitness functions (i.e., Lloydʼs phenotypic gender). However, temporal variation in sexual expression in andromonoecious species and its relationship with seasonal changes in climatic conditions remain poorly understood. Here we analyze floral attributes, visitors and variation in sexual expression in three populations of Solanum lycocarpum A. St. -Hil. Seasonality in the production of floral types, the mating system and floral visitors were also investigated. Hermaphroditic flowers produced more pollen grains, but the pollen of staminate flowers had higher viability. Only hermaphroditic flowers produced fruits, and ovules in staminate flowers were sterile. Solanum lycocarpum is mainly pollinated by large bees with the ability to vibrate flowers. Phenotypic gender varied throughout the year, and the seasonal production of staminate flowers is associated with the local climate. We suggest that the higher and seasonally variable relative abundance of staminate flowers compared to the low and uniform production of hermaphroditic flowers may be explained by (a) the very high energetic costs incurred in producing large fruits, which in turn make hermaphroditic flower production very costly, and (b) the potentially lower energy expenditure of the smaller staminate flowers with reduced pistils and non-viable ovules that allow them to rapidly respond to climate variability.  相似文献   

14.
The floral organogenesis of Potamogeton distinctus A. Benn. was observed under the scanning electron microscope (SEM). The floral buds are first initiated on the lower portion of inflorescence in alternating whorls of three. Each of the floral buds is subtended by a bract primordium during the early stages. The primordia of the floral appendages arise on the floral bud acropetally. Two lateral tepals are first initiated and then two median ones soon after. Stamens are normally initiated as elongate primordia opposite the tepals, with the two lateral stamens preceding the median ones. The two carpel primordia arise alternating with the stamens. In some flowers, one of the two gynoecial primordia becomes inactive soon after they are initiated, or only one carpel primordium is initiated. The present observation of the gynoecial development supports the viewpoint that the evolution of flower in Potamogeton involves a reduction in number of parts. The existence of bract primordium during the early stages in many species of Potamogeton indicates that the absence of bractin mature flowers should be the result of reduction.  相似文献   

15.
烟草花序苞叶的离体花芽分化   总被引:6,自引:0,他引:6  
  相似文献   

16.
利用扫描电镜(SEM)和光镜(LM)对臭椿花序及花器官的分化和发育进行了初步研究,表明:1)臭椿花器官分化于当年的4月初,为圆锥花序;2)分化顺序为花萼原基、花冠原基、雄蕊原基和雌蕊原基。5个萼片原基的发生不同步,并且呈螺旋状发生;5个花瓣原基几乎同步发生且其生长要比雄蕊原基缓慢;雄蕊10枚,两轮排列,每轮5个原基的分化基本是同步的;雌蕊5,其分化速度较快;3)在两性花植株中,5个心皮顶端粘合形成柱头和花柱,而在雄株中,5个心皮退化,只有雄蕊原基分化出花药和花丝。本研究着重观察了臭椿中雄花及两性花发育的过程中两性花向单性花的转变。结果表明,臭椿两性花及单性花的形成在花器官的各原基上是一致的(尽管时间上有差异),雌雄蕊原基同时出现在每一个花器官分化过程中,但是,可育性结构部分的形成取决于其原基是否分化成所应有的结构:雄蕊原基分化形成花药与花丝,雌蕊原基分化形成花柱、柱头和子房。臭椿单性花的形成是由于两性花中雌蕊原基的退化所造成,其机理有待于进一步研究。  相似文献   

17.
易仁知  秦俊  黄清俊 《西北植物学报》2023,43(10):1760-1769
以穗花牡荆为研究材料,通过探究其花芽分化进程和生理特性,为花期调控技术提供成花机理。采用物候期观察和石蜡切片相结合的方法并测定花芽分化过程中相关生理指标,研究花发育过程中的形态和生理变化。结果表明,穗花牡荆花芽分化为一年多次分化型,其进程可划分为七个时期:未分化期、总轴花序原基分化期、初级分轴花序原基分化期、次级分轴花序原基分化期、小花原基分化期、花器官分化前期和花器官分化后期。同一植株不同位置花芽及同一花序中不同单花分化的进程不同,第一季花期后各阶段的花芽分化形态常存在重叠。花芽分化过程中不同时期叶片和花芽的可溶性糖和可溶性蛋白质含量均有上升下降的变化,总体上叶片中营养物质含量高于花芽保证营养供应。花芽分化过程中,IAA、ABA、CTK和GA3整体水平上先升后降有利于花芽分化进行。研究认为,花芽中大量的可溶性糖和蛋白质积累及较高的碳氮比,有利于穗花牡荆花芽形态分化顺利完成。低水平的GA3/ABA和IAA/CTK有利于花序的形成,ABA/CTK和ABA/IAA比值升高促进小花原基和小花萼片原基的分化, GA3/CTK、GA3/ABA和GA3/IAA比值升高促进花瓣原基、雄雌蕊原基发育。  相似文献   

18.
Terminal meristems of Pisum sativum (garden pea) transit from vegetative to inflorescence development, and begin producing floral axillary meristems. Determination for inflorescence development was assessed by culturing excised buds and meristems. The first node of floral initiation (NFI) for bud expiants developing in culture and for adventitious shoots forming on cultured meristems was compared with the NFI of intact control buds. When terminal buds having eight leaf primordia were excised from plants of different ages (i.e., number of unfolded leaves) and cultured on 6-benzylaminopurine and kinetin-supplemented medium, the NFI was a function of the age of the source plant. By age 3, all terminal buds were determined for inflorescence development. Determination occurred at least eight nodes before the first axillary flower was initiated. Thus, the axillary meristems contributing to the inflorescence had not formed at the time the bud was explanted. Similar results were obtained for cultured axillary buds. In addition, meristems excised without leaf primordia from axillary buds three nodes above the cotyledons of age-3 plants gave rise to adventitious buds with an NFI of 8.3 ±0.3 nodes. In contrast seed-derived plants had an NFI of 16.5 ±0.2. Thus cells within the meristem were determined for inflorescence development. These findings indicate that determination for inflorescence development in P. sativum is a stable developmental state, separable from determination for flower development, and occurring prior to initiation of the inflorescence at the level of meristems.  相似文献   

19.
Growth regulators participate in the differentiation of floral parts, determining the developmental path of the respective type of inflorescence. The effect depends on the expression of the peculiarities of floral part differentiation, the recognition of the character of endogenous substances in certain stages and the choice of the suitable regulator for application. In the primitive flower ofPapaver petals and stamens are formed from the peripheral meristem with a lower content of auxins and a higher level of gibberellic substances. The pistil arises later from central tissues with a higher level of auxins and inhibitory substances. The stamens are more sensitive to the higher level of auxin substances, and by a suitable application of GA3 and BAP they can be transformed into petals; in this way double flower forms arise. In the differentiation of floral parts ofCampanula, Rosa andMelandrium similar regularities assert themselves in time successions, but in another spatial arrangement. Sex differentiation of diclinous flowers ofMelandrium is based on differences in heterochromosomes XY and XX. The rise of the zygomorphic flower ofVeronica is accompanied by a different distribution of endogenous substances which affect the development of petals, stamens and the pistil. The differentiation of flowers in the racemose inflorescence occurs in the acropetal succession, and lateral primordia inCampanula develop into actinomorphic regular flowers, whereas inDigitalis they are zygomorphic and only the terminal flower is peloric. In the initial phases the staminate tassel and the pistillate ear in maize are identical. Earlier differentiation of the terminal pistillate tassel is connected with a higher level of gibberellins and the later development of the lateral pistillate ear is accompanied by the increase in auxin-like substances and inhibitions. Similar correlations were found in the development of staminate catkins and the differentiation of pistillate flowers in terminal buds ofJuglans regia. By the application of auxin-like substances it is possible to achieve the transformation of primordia of the staminate tassel into the pistillate ear in maize or to regulate the number of staminate catkins and pistillate flowers on twigs of the walnut tree. In the capitulum of the sunflower differences arise between peripheral pistillate ray flowers and hermaphrodite tubular ones. By applying GA3 and BAP the number of ray flowers is increased. If the normal course of inflorescence differentiation is affected with a suitable type of regulator, a range of floral abnormalities appears which permit to assess the intervention in different developmental stages and the reaction of the primordium to the applied type of regulator. Abnormalities also suggest some phylogenetic correlations.  相似文献   

20.
A system to study the basis of high temperature-induced floral bud abortion using naturally occurring variation for heat-tolerance of floral development among Arabidopsis thaliana (L.) Heynh. wild-collected accessions is described. High temperature-induced floral bud abortion was dependent on both temperature and duration of exposure. Normalizing high temperature exposures to degree-hours (°C-h) above 33 °C indicated that abortion of flower buds increased as exposure increased between 200 and 300 °C-h above 33 °C and exposures > 300 °C-h above 33 °C resulted in abortion of the entire primary inflorescence. Thirteen wild-collected Arabidopsis accessions representing a latitudinal gradient were screened for variation in high temperature-induced floral bud abortion, and Col-0 and No-0 were selected as models for heat-tolerance and -sensitivity for flower development, respectively. No-0 flower buds were heat-sensitive across a wider range of developmental stages (stages 9–12, compared to stage 12 for Col-0 flower buds). Exposing the inflorescence alone to high temperature was sufficient to induce floral bud abortion, and Col-0 and No-0 photosynthetic rates were similar during high temperature exposure and recovery, indicating that high temperature induced floral abortion is not simply due to reductions in carbon assimilation under high temperatures. Determining that exposing floral buds alone to high temperature is sufficient to induce abortion and identifying the stages of floral development sensitive to high temperature-induced abortion will aid in identifying the developmental events subject to disruption under high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号