首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2,4-Diaminotoluene (2,4-DAT) is a mutagenic and hepatocarcinogenic aromatic amine, requiring metabolic activation. We have found that the mutagenic potency of 2,4-DAT in Salmonella TA98 is similar when activated by either Aroclor-1254-induced rat primary hepatocytes or 9000 x g supernatant. Previous work has demonstrated that 2,4-DAT is activated by cytochrome P450. The present report describes an investigation of the role of acetyltransferase in 2,4-DAT activation. Substitution of TA98 with the acetyltransferase-deficient strain TA98/1,8-DNP6 resulted in an approximately 90% decrease in the mutagenic potency for 2,4-DAT using S9 activation. The newly engineered acetyltransferase-enhanced Salmonella tester strain YG1024 (TA98(pYG219] demonstrated greatly enhanced sensitivity to the mutagenicity of 2,4-DAT. Inhibition of O-acetyltransferase activity, either with the selective acetyltransferase inhibitor thiolactomycin, or by competitive inhibition with an alternative substrate for the enzyme, reduced the mutagenicity of 2,4-DAT in this acetyltransferase-enhanced bacterial strain. From these data we conclude that following 2,4-DAT activation by N-hydroxylation by cytochrome P450, the resulting hydroxylamino intermediate is further activated in the bacteria via O-acetylation to form the ultimate reactive intermediate, which is postulated to be 4-acetoxyamino-2-aminotoluene.  相似文献   

2.
Streptomyces griseus cells containing cytochrome P-450soy oxidize a diverse array of xenobiotic compounds. This metabolic capability was exploited for activation of promutagenic chemicals such as polycyclic aromatic hydrocarbons, aromatic amines and small aliphatics in a modified Salmonella/Ames plate incorporation assay using tester strains TA98 and TA1538. In this assay promutagens such as 3,3'-dimethylbenzidine, 3,3'-dimethoxybenzidine, benzidine, 2-acetylaminofluorene, 2-aminoanthracene, 2,4-diaminotoluene, 4-aminobiphenyl, benzo(a)pyrene, chloropicrin and N-nitrosodimethylamine were oxidized to mutagenic metabolites by S. griseus intact cells which mutated Salmonella tester strains (TA98 and TA1538). S. griseus failed to activate 7,12-dimethylbenzanthracene and 4-chloro-2-nitroaniline. In parallel tests performed with rat liver homogenate (S9), N-nitrosodimethylamine was not activated.  相似文献   

3.
Prostaglandin H synthase catalyzes the first step in the synthesis of prostaglandins from arachidonic acid. The peroxidase activity of this enzyme can support the oxidation of xenobiotics, particularly aromatic amines. This pathway of metabolism may contribute to the activation of carcinogenic aromatic amines in target tissues such as the skin, lung, and bladder. In this review, recent work on this subject is summarized. I emphasize the elucidation of the structures of aromatic amine oxidation products, and their interactions with biological macromolecules. Prostaglandin H synthase supports the activation of benzidine to a mutagenic species in the Ames (Salmonella typhimurium) test, and our studies of the mechanism of this activation are described.  相似文献   

4.
The products detected in the incubation of 2,4-dinitrotoluene (2,4-DNT) with Salmonella typhimurium strains TA98 and TA98/1,8-DNP6 were nitrosonitrotoluenes, hydroxylaminonitrotoluenes, aminonitrotoluenes and dimethyl dinitroazoxybenzene. The capacity of TA98NR to reduce 2,4-DNT was much lower than that of TA98 and TA98/1,8-DNP6. The bacterial products showed no mutagenic activity in the Ames assay using TA98 and TA100. These results indicate that the lack of mutagenic activity of 2,4-DNT is not due to low reductive metabolism of 2,4-DNT by the bacteria, but to the lack of mutagenic activity of the bacterial reductive products of 2,4-DNT, including dimethyl dinitroazoxybenzene.  相似文献   

5.
This paper describes the screening studies of 104 commercial crude drugs for mutagenicity by the rec-assay with Bacillus subtilis as well as the reversion assay with Ames strains TA98 and TA100 of Salmonella typhimurium. The rec-assays showed that 13 water extracts and 27 methanol extracts of the crude drugs were positive. The Ames assays with or without metabolic activation showed that 24 water extracts and 16 methanol extracts were mutagenic. In total, mutagenic activities were found in 45 samples among the 104 crude drugs tested.  相似文献   

6.
The mutagenicity of 2,4-diaminotoluene (DAT) in Ames's Salmonella/microsome test was remarkably enhanced by treatment with hydrogen peroxide. Therefore, identification of the major mutagenic reaction product of 2,4-DAT with hydrogen peroxide at room temperature has been performed. Red precipitates were produced in a 2-day reaction mixture and were column chromatographed on silica gel. 5 fractions having mutagenic potency were obtained. The red crystalline needles, obtained as the major reaction product, were separated from fraction 2 and were subjected to high resolution mass spectrometry, 1H- and 13C-NMR spectrometry. The structure of the compound was determined to be 2,7-diamino-3,8-dimethylphenazine from physicochemical and chemical evidence. The compound induced 212 revertants/nmole in Salmonella typhimurium TA98 with 25 microliters S9 per plate.  相似文献   

7.
A solution of 1-aminopyrene in dimethyl sulfoxide exposed to an artificial source of near ultraviolet light (600 kJ/m2) induced significant direct-acting mutagenicity in the Ames/Salmonella plating assay utilizing strain TA98. High-performance liquid chromatography of this solution resulted in a fraction that was mutagenic on TA98 but inactive on a nitroreductase-deficient strain of Salmonella (TA98NR). This observation suggested the presence of a nitro-containing compound. Mass spectral analysis confirmed that 1-nitropyrene was the active photoproduct in this fraction. These data implicate photochemical transformation of primary aromatic amines as an alternative mechanism by which nitroaromatic compounds can be formed in the environment.  相似文献   

8.
Cyracure UVR 6105 is a cycloaliphatic epoxy monomer and has both carboxylate and epoxy groups, with the potential for rapid polymerization. It is widely used in industry for the preparation of inks, resins, coatings, and was proposed for incorporation into dental composites. The objective of this study was to determine the mutagenic potential of this chemical related to its metabolite products. Several doses of Cyracure UVR 6105 were dissolved in DMSO and subjected to the Ames Salmonella mutagenicity assay. A metabolic activation system (S9-mix) was used consisting of Arochlor-induced liver S9 homogenate enriched with NADP and glucose-6-phosphate cofactors. In contrast to studies without S9-mix, Cyracure UVR 6105 exhibited enhanced genotoxic activities with strains TA100 and TA1535 in the presence of liver S9-mix. From in vitro metabolism of Cyracure UVR 6105 with S9-mix, as used in the Ames assay, several metabolites were identified. The alcohol metabolite, 3,4-epoxycyclohexylmethanol, containing intact epoxy group was identified in the organic solvent extract. This metabolite was synthesized and proved to be mutagenic against TA100 when assayed in the presence and absence of S9-mix. Results showed that the increased mutagenicity of Cyracure UVR-6105 in the presence of liver enzymes is due to the formation of the mutagenic metabolite 3,4-epoxycyclohexylmethanol.  相似文献   

9.
Thin-layer chromatography (TLC) was used to separate components in the basic and tar fractions of solvent refined coal (SRC-I) process solvent (PS) to obtain materials suitable for biological and chemical analysis. Those fractions eluted from TLC plates which were mutagenically active in the Ames/Salmonella assay were analyzed by gas chromatographic mass spectrometry (GCMS) for polycyclic azaarenes, polyaromatic primary amines (PAA) and carbazoles. In all materials tested, a strong correlation was observed between the concentration of PAAs in a given TLC region and the mutagenicity of that region in the Ames assay system. Conversely, azaarenes having 2--4 fused rings and carbazoles were present in both mutagenic and non-mutagenic TLC eluates. No PAAs were detected in mutagenically inactive TLC eluates. In comparison to the mutagenic tar fractions, the PS basic fraction contained relatively larger concentrations of 2- and 3-ringed components such as aminonaphthalenes and aminoanthracenes or aminophenanthrenes. The tar fractions, which were essentially devoid of aminonaphthalenes, had a higher average molecular weight and contained relatively higher concentrations of aminopyrenes.  相似文献   

10.
10 complex hazardous wastes were tested for mutagenic activity using a modified version of the TLC/Salmonella assay developed by Bj?rseth et al. (1982). This fractionation/bioassay scheme couples thin-layer chromatography (TLC) with the Salmonella/mammalian-microsome (Ames) assay for the detection of mutagenic constituents in complex mixtures. Crude (unadulterated) hazardous wastes and selected hazardous waste extracts were fractionated on commercially available cellulose TLC plates. Mutagenicity testing was performed in situ by applying a single overlay of minimal growth agar, tester strain TA98 or TA100, and the optional metabolic activation system directly onto the developed chromatogram. A mutagenic effect was indicated either by the appearance of localized clusters of revertant colonies or by an increase in total revertant growth vis-à-vis control plates. 7 of 10 hazardous wastes (including tars, emulsions, sludges, and spent acids and caustics) demonstrated mutagenic activity when tested by this method. To assess the sensitivity of the modified TLC/Salmonella assay, 14 Salmonella mutagens from a wide range of chemical classes and polarities were tested. Selected compounds included heterocyclics, aromatic amines, alkylating agents, antitumor agents, a nitrosamine and a nitroaromatic. 11 of the 14 mutagens were positive in this test system. The 3 compounds refractory to analysis included a polycyclic aromatic hydrocarbon and two volatiles.  相似文献   

11.
Mutagenicity of azo dyes: structure-activity relationships.   总被引:10,自引:0,他引:10  
Azo dyes are extensively used in textile, printing, leather, paper making, drug and food industries. Following oral exposure, azo dyes are metabolized to aromatic amines by intestinal microflora or liver azoreductases. Aromatic amines are further metabolized to genotoxic compounds by mammalian microsomal enzymes. Many of these aromatic amines are mutagenic in the Ames Salmonella/microsomal assay system. The chemical structure of many mutagenic azo dyes was reviewed, and we found that the biologically active dyes are mainly limited to those compounds containing p-phenylenediamine and benzidine moieties. It was found that for the phenylenediamine moiety, methylation or substitution of a nitro group for an amino group does not decrease mutagenicity. However, sulfonation, carboxylation, deamination, or substitution of an ethyl alcohol or an acetyl group for the hydrogen in the amino groups leads to a decrease in the mutagenic activity. For the benzidine moiety, methylation, methoxylation, halogenation or substitution of an acetyl group for hydrogen in the amino group does not affect mutagenicity, but complexation with copper ions diminishes mutagenicity. The mutagenicity of benzidine or its derivatives is also decreased when in the form of a hydrochloride salt with only one exception. Mutagenicity of azo dyes can, therefore, be predicted by these structure-activity relationships.  相似文献   

12.
The kinetics of near ultraviolet light-mediated phototransformation of 2-aminofluorene (2-AF) was studied using high performance liquid chromatography (HPLC) and the Ames/Salmonella mutagenicity bioassay. Employing tester strains TA98, TA1538, and the nitroreductase-deficient TA98NR without the addition of exogenous metabolic enzymes, we were able to detect and discriminate between the UVA exposure-dependent formation of two stable photoproducts, 2-nitrosofluorene (2-NOF) and 2-nitrofluorene (2-NO2F). Mutagenicity of irradiated 2-AF solutions (using dimethyl sulfoxide as a solvent) in the various tester strains indicates the rapid formation of the photo-labile 2-NOF, after which 2-NO2F accounts for the preponderance of mutagenic activity. Continued UVA irradiation (greater than 72 h at 6.8 J/m2/s) of 2-AF results in the formation of greater than 30 photoproducts resolvable on HPLC, several of which, in addition to 2-NOF and 2-NO2F, are mutagenic on Salmonella but are chemically undefined to date. Prolonged irradiation ultimately destroys the photo-induced mutagenicity of 2-AF. However, UVA-induced 2-AF photoproducts are stable for several weeks when stored in sealed vials in the dark. Light potentiated oxidation of aromatic amines constitutes an alternative mechanism for the transformation of aromatic amines into proximate mutagens/carcinogens.  相似文献   

13.
Mutagenicity of 2,4-diaminotoluene (DAT) in the Salmonella mutagenicity assay was increased with liver fractions from phenobarbital (PB) or beta-naphthoflavone (BNF) treated rats. Substitutions of the hydrogens in the methyl group of 2,4-DAT with deuterium resulted in a decrease in mutagenicity. Incubation of rat liver microsomes with tritiated 2,4-DAT in the presence of NADPH led to the formation of irreversibly bound products to microsomal protein. The rates of binding were not increased using microsomes from PB or BNF-treated rats and was not altered by deuterium substitution in the methyl group. Addition of superoxide dismutase, glutathione (GSH) or rat liver supernatant reduced 2,4-DAT irreversible binding, whereas 2,4-DAT mutagenicity was unaffected by superoxide dismutase addition. Injection of tritiated 2,4-DAT 100 mg/kg to rats lead to its irreversible binding to liver protein and ribosomal RNA and to kidney protein in vivo, again protein binding was not increased after prior treatment with PB or BNF. No irreversible interaction of tritiated 2,4-DAT with DNA either in vitro or in vivo could be demonstrated.  相似文献   

14.
The carcinogenicity of aniline-based aromatic amines is poorly reflected by their activity in short-term mutagenicity assays such as the Salmonella typhimurium reverse mutation (Ames) assay. More information about the mechanism of action of such carcinogens is needed. Here we report the effects on DEL recombination in Saccharomyces cerevisiae of the carcinogen 2,4-diaminotoluene and its structural isomer 2,6-diaminotoluene, which is reported to be non-carcinogenic. Both compounds are detected as equally mutagenic in the Salmonella assay. In the absence of any external metabolizing system both compounds were recombinagenic in the DEL assay, with the carcinogen being a more potent inducer of deletions than the non-carcinogen. In the presence of Aroclor-induced rat liver S9, however, the carcinogen 2,4-diaminotoluene became a 2-fold more potent inducer of deletions, and the non-carcinogen 2,6-diaminotoluene was rendered less toxic and no induced recombination was observed. 2,4-Diaminotoluene is distinguished from its non-carcinogen analog in the DEL assay, therefore, on the basis of a preferential activation of the carcinogen in the presence of a rat liver microsomal metabolizing system. Free radical species are produced by several carcinogens and have been implicated in carcinogenesis. We further investigated whether exposure of yeast to either 2,4-diaminotoluene or 2,6-diaminotoluene resulted in a rise in intracellular free radical species. The effects of the free radical scavenger N-acetylcysteine on toxicity and recombination induced by the two compounds and intracellular oxidation of the free radical-sensitive reporter compound dichlorofluorescin diacetate were studied. Both 2,4- and 2,6-diaminotoluene produced free radical species in yeast, indicating that the reason for the differential activity of the compounds for induced deletions is not reflected in any difference in the production of free radical species.  相似文献   

15.
Liver post-mitochondrial supernatants derived from 10 individuals were used as the source of metabolic activation for carcinogens in the Ames quantitative mutagenicity test using Salmonella typhimurium TA 100. The liver samples were obtained from brain-dead donors and autopsy cases. The ability of human enzymes to activate aromatic amines ranged from the undetectable to highly active for 2-acetylaminofluorene. None of the samples exhibited any ability to activate benzidine. A generally low activity was observed in the capability of human enzymes to activate the polynuclear aromatic hydrocarbons, 3-methylcholanthrene and benzo(a)pyrene. Most samples were positive for activating 4-nitrobiphenyl. However, the highest mutagenic activity in the presence of human enzymes was consistently observed for aflatoxin B1 and sterigmatocystin. These results indicated that (a) human enzyme systems, like rodent systems, are more effective in inducing mutagenic activity from mycotoxins than aromatic amines and polynuclear aromatic hydrocarbons, and (b) samples derived from different individuals exhibited considerable variation in the ability to activate carcinogens belonging to a same class of compound.  相似文献   

16.
A J Hoorn 《Mutation research》1989,222(4):343-350
Dimethylglycine (DMG) and the chemically related amino acids glycine, sarcosine (monomethylglycine) and betaine (trimethylglycine) were tested in Salmonella typhimurium strain TA100 after treatment with sodium nitrite under acidic conditions using a modified Ames Salmonella/microsome assay as reported by Colman et al. (1980). The increase in the number of revertants observed both with and without metabolic activation was also induced in the control mixtures without adding the amines. From the subsequent testing of the individual components of the mixtures, we concluded that non-consumed nitrite was responsible for the mutagenic responses observed in the different reaction mixtures, and not the amines themselves. There were no consistent indications of mutagenic activity of the DMG test mixture as compared to the control mixture which exhibited both consistent mutagenic activity and a toxic effect which was not increased by the addition of DMG. In fact, DMG seemed to decrease the toxicity of the control reaction solution to the Salmonella which was clearly observed at the higher doses. DMG cannot be considered mutagenic under the test conditions employed. The same can be said of the other amino acids as well.  相似文献   

17.
The plant cell/microbe coincubation assay is based on employing living tobacco cells in suspension culture as the activating system for promutagens and the Ames/Salmonella cells as the genetic indicator system. In contrast to aromatic amines(e.g. 2-aminofluorene andm-phenylenediamine) that were previously reported to be activated to products mutagenic in theS. typhimurium strains TA98 or YG1024 by tobacco cells, promutagenic N-nitrosoamines (N-nitrosodimethylamine, N-nitroso-morpholine, N-nitrosopiperidine, N-nitrosomethyl-2-hydroxypropylamine) were not activated to product(s) mutagenic inS. typhimurium TA 100.  相似文献   

18.
We have evaluated the mutagenic activity of a series of diazo compounds derived from benzidine and its congeners o-tolidine, o-dianisidine and 3,3'-dichlorobenzidine as well as several monoazo compounds. The test system used was a modification of the standard Ames Salmonella assay in which FMN, hamster liver S9 and a preincubation step are used to facilitate azo reduction and detection of the resulting mutagenic aromatic amines. All of the benzidine and o-tolidine dyes tested were clearly mutagenic. The o-dianisidine dyes except for Direct Blue 218 were also mutagenic. Direct Blue 218 is a copper complex of the mutagenic o-dianisidine dye Direct Blue 15. Pigment Yellow 12, which is derived from 3,3'-dichlorobenzidine, could not be detected as mutagenic, presumably because of its lack of solubility in the test reaction mixture. Of the monoazo dyes tested, methyl orange was clearly mutagenic, while C.I. Acid Red 26 and Acid Dye (C.I. 16155; often referred to as Ponceau 3R) had marginal to weak mutagenic activity. Several commercial dye samples had greater mutagenic activity with the modified test protocol than did equimolar quantities of their mutagenic aromatic amine reduction products. Investigation of this phenomenon for Direct Black 38 and trypan blue showed that it was due to the presence of mutagenic impurities in these samples. The modified method used appears to be suitable for testing the mutagenicity of azo dyes, and it may also be useful for monitoring the presence of mutagenic or potentially carcinogenic impurities in otherwise nonmutagenic azo dyes.  相似文献   

19.
Pyrolyzates of protein and related materials were treated with nitrite under acidic conditions, and the mutagenic activity toward Salmonella tester strains was determined. After treatment with nitrite in acidic solution, casein pyrolyzate, an extract of roasted chicken meat, tobacco-smoke condensate and some aromatic amines showed appreciable decreases in their mutagenic activities toward Salmonella typhimurium TA 98. Aromatic amines in the pyrolyzates may be changed by nitrite treatment to other forms having no or lower mutagenic activity toward Salmonella typhimurium TA 98. The contribution by aromatic amines to the total mutagenic activity of the pyrolyzates was as high as 80% in both casein pyrolyzate and extract of roasted chicken meat and 50% in tobacco-smoke condensate. Pyrolyzates of protein and related materials did not show a decrease in the mutagenic activity toward Salmonella typhimurium TA 100 with the same treatment.  相似文献   

20.
Acetyl-CoA: N-hydroxyarylamine O-acetyltransferase is an enzyme involved in the intracellular metabolic activation of arylhydroxylamines derived from mutagenic nitroarenes and aromatic amines. The acetyltransferase gene of Salmonella typhimurium TA1538 was cloned into pBR322 and the plasmids harboring the gene were introduced into TA98 and TA100. The resulting strains (YG1024 and YG1029) had about 100 times higher 2-hydroxyamino-6-methyldipyrido[1,2-a:3',2'-d]-imidazole (N-hydroxy-Glu-P-1) O-acetyltransferase activity than TA1538 containing pBR322, and were extremely sensitive to the mutagenic actions of 2-nitrofluorene, 1-nitropyrene, 1,8-dinitropyrene, 2-amino-6-methyldipyrido[1,2-a:3',2-d)-imidazole (Glu-P-1), 2-aminofluorene and 2-aminoanthracene. These results indicate that the new strains permit the efficient detection of the mutagenicity of environmental nitroarenes and aromatic amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号