首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Characteristics of the three major ammonia assimilatory enzymes, glutamate dehydrogenase (GDH), glutamine synthetase (GS) and glutamate synthase (GOGAT) in Corynebacterium callunae (NCIB 10338) were examined. The GDH of C. callunae specifically required NADPH and NADP+ as coenzymes in the amination and deamination reactions, respectively. This enzyme showed a marked specificity for -ketoglutarate and glutamate as substrates. The optimum pH was 7.2 for NADPH-GDH activity (amination) and 9.0 for NADP+-GDH activity (deamination). The results showed that NADPH-GDH and NADP+-GDH activities were controlled primarily by product inhibition and that the feedback effectors alanine and valine played a minor role in the control of NADPH-GDH activity. The transferase activity of GS was dependent on Mn+2 while the biosynthetic activity of the enzyme was dependent on Mg2+ as essential activators. The pH optima for transferase and biosynthetic activities were 8.0 and 7.0, respectively. In the transfer reaction, the K m values were 15.2 mM for glutamine, 1.46 mM for hydroxylamine, 3.5×10-3 mM for ADP and 1.03 mM for arsenate. Feedback inhibition by alanine, glycine and serine was also found to play an important role in controlling GS activity. In addition, the enzyme activity was sensitive to ATP. The transferase activity of the enzyme was responsive to ionic strength as well as the specific monovalent cation present. GOGAT of C. callunae utilized either NADPH or NADH as coenzymes, although the latter was less effective. The enzyme specifically required -ketoglutarate and glutamine as substrates. In cells grown in a medium with glutamate as the nitrogen source, the optimum pH was 7.6 for NADPH-GOGAT activity and 6.8 for NADH-GOGAT activity. Findings showed that NADPH-GOGAT and NADH-GOGAT activities were controlled by product inhibition caused by NADP+ and NAD+, respectively, and that ATP also had an important role in the control of NADPH-GOGAT activity. Both activities of GOGAT were found to be inhibited by azaserine.Abbreviations GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase  相似文献   

2.
Glutamine-synthetase (GS; EC 6.3.1.2) activity and protein levels were measured in crude extracts from Monoraphidium braunii Näegeli, strain 202-7d, cultures grown under different nitrogen sources. Only ammonium and l-glutamine promoted a partial enzyme inactivation, which, in the case of l-glutamine, was accompanied by a significant repression of GS. Methionine sulfoximine (MSX), a strong inhibitor of GS, produced a drastic inactivation of GS which was concomitant with a marked increase in GS protein as measured by rocket immunoelectrophoresis. Such an increase was prevented in the presence of cycloheximide. The effect of the l-glutamine analog on GS activity and protein was partially inhibited if l-glutamine was also added to cell cultures, possibly indicating competition in the transport of these two substances. In addition, the effects of MSX were reversed after longer times when cultures were treated with smaller concentrations of inhibitor. Treatment of cell cultures with azaserine, a specific inhibitor of glutamate synthase, the second enzyme acting in the ammonium assimilation pathway, promoted a strong GS inactivation and a partial repression of this enzyme, which paralleled a specific increase in the intracellular pools of glutamine High-performance liquid chromatography measurements of intracellular amino-acid concentrations showed that glutamine levels correlated negatively with GS concentration. A role for glutamine as a negative effector of GS synthesis is proposed.Abbreviations GS l-glutamine synthetase - GOGAT l-glu-tamine:2-oxoglutarate amidotransferase - MSX methionine sulfoximine During the course of this work, J.A. was supported by a fellowship from Junta de Andalucía, and J.M. G-F. by a fellowship from the Spanish Ministerio de Educatión y Ciencia. This work was supported by the Junta de Andalucía.  相似文献   

3.
Glutamine synthetase (GS, EC 6.3.1.2) from Nocardia asteroides was purified to homogeneity by ammonium sulfate precipitation, Sephadex G-150, and DEAE-Sepharose chromatography. The native molecular weight of the purified enzyme was determined to be 720 kDa. SDS-PAGE analysis of the purified preparation revealed a single band corresponding to 59 kDa, indicating the possible presence of 12 identical subunits. The divalent cations Mn2- and Mg2+ were found to be essential for optimal transferase and biosynthetic activity, respectively. The optimal pH and temperature for both activities of the enzyme were found to be 7.2 and 50°C. Amino acids such as l-alanine, glycine, and aspartate inhibited the GS activity. The K m values for the substrates of the biosynthetic reaction ATP, glutamate, and ammonium chloride were found to be 400 m, 7.7mm, and 200 m, respectively. Addition of ammonium chloride to the nitrogen-limited culture resulted in a decrease of GS transferase and biosynthetic activities. Phosphodiesterase treatment of the extract from ammonia-shocked cultures showed an increase in GS transferase activity. The results indicate the possible regulation of GS by covalent modification.  相似文献   

4.
Three types of glutamine synthetase (GS)-impaired mutants (gln) ofNostoc muscorum were isolated as ethylenediamine (EDA)-resistant phenotypes and characterized with respect to heterocyst development, nitrogen fixation, ammonium metabolism, photosynthetic characteristics, and glutamine synthetase activity. The criterion for categorizing the mutants was the extent of loss of GS activity (both in transferase and biosynthetic assays) compared with wild type; it was 70% in EDA-1, 30% in EDA-2, and more than 90% in EDA-3 strains. The level of nitrogenase activity in mutant strains was proportionate to heterocyst frequency and was found refractory to ammonium and EDA repression. In EDA-resistant strains, development of heterocysts and their spacing pattern remained unaffected and did not respond to treatment of amino acid analogues, drugs, and ammoniacal compounds which otherwise either stimulated or suppressed the number and altered the spacing pattern in wild type. A biphasic pattern of ammonium uptake indicating two transport systems was observed in all the strains except that the Km values for both high- and low-affinity systems were altered in mutant strains. In vivo treatment with MSX or EDA significantly inhibited the GS activity in wild type, whereas mutant strains did not respond to these treatments and were able to liberate NH 4 + continuously into the medium without MSX treatment. During NH 4 + uptake, percentage inhibition of O2 evolution and changes in increase of fluorescence intensity were low in EDA strains compared with wild type. Assessment of GS protein with antibodies against GS and quantitative polyacrylamide gel electrophoresis (PAGE) suggested that loss in specific activity of GS per milligram of extractable protein in EDA mutants was owing to low production of GS-specific protein. SDS-PAGE of purified GS enzyme from all the strains revealed only one polypeptide band of molecular weight of about 51.28 kDa.  相似文献   

5.
In the presnet studies with whole cells and extracts of the photosynthetic bacterium Rhodopseudomonas capsulata the rapid inhibition of nitrogenase dependent activities (i.e. N2-fixation acetylene reduction, or photoproduction of H2) by ammonia was investigated. The results suggest, that the regulation of the nitrogenase activity by NH 4 + in R. capsulata is mediated by glutamine synthetase (GS). (i) The glutamate analogue methionine sulfoximine (MSX) inhibited GS in situ and in vitro, and simultaneously prevented nitrogenase activity in vivo. (ii) When added to growing cultures ammonia caused rapid adenylylation of GS whereas MSX abolished the activity of both the adenylylated and unadenylylated form of the enzyme. (iii) Recommencement of H2 production due to an exhaustion of ammonia coincided with the deadenylylation of GS. (iv) In extracts, the nitrogenase was found to be inactive only when NH 4 + or MSX were added to intact cells. Subsequently the cells had to be treated with cetyltrimethylammonium bromide (CTAB). (v) In extracts the nitrogenase activity declined linearily with an increase of the ration of adenylylated vs. deadenylylated GS. A mechanism for inhibition of nitrogenase activity by ammonia and MSX is discussed.Abbreviations BSA bovin serum albumine - CTAB cetyltrimethylammonium bromide - GOGAT l-glutamine: 2-oxoglutarate amino transferase - GS glutamine synthetase - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

6.
In cyanobacteria, the glutamine synthetase-L-glutamine-2-oxoglutarate aminotransferase (GS-GOGAT) pathway is the major ammonia-assimilating route. The GS ofAnabaena doliolum was synthesized more under N2-fixing conditions, followed by ammonium, nitrate, and nitrite as nitrogen sources. The activities of both the glutamine synthetase, Mg2+-dependent biosynthetic and Mn2+-dependent -glutamyl transferase were optimum at pH 7. The active site of the enzyme bears sulfhydryl (-SH) groups; this was confirmed with the-SH group inhibitors, para-chloromercuribenzoate (pCMB) and N-ethylmaleimide (NEM). The biosynthetic and -glutamyl transferase activities showed specificity for the divalent cations, Mg2+ and Mn2+, respectively. The other divalent cations Co2+, Cu2+, and Ni2+ were poor substitutes. This enzyme also required these divalent cations to stabilize its structure and function under extreme conditions such as high and low temperatures and urea denaturation. The glutamate analogl-methionine-d,l-sulfoximine, inactivated the enzyme, whereas the GOGAT inhibitor, azaserine, had no effect on the enzyme activity. The GS enzyme required de novo protein synthesis.  相似文献   

7.
The intracellular ratio of 2-oxoglutarate to glutamine has been analyzed under nutritional conditions leading to different activity levels of nitrate-assimilating enzymes in Phormidium laminosum (Agardh) Gom. This non-N2-fixing cyanobacterium adapted to the available nitrogen source by modifying its nitrate reductase (NR; EC 1.7.7.2), nitrite reductase (NiR; EC 1.7.7.1) and glutamine synthetase (GS; EC 6.3.1.2) activities. The 2-oxoglutarate/glutamine ratio was similar in cells adapted to grow with nitrate or ammonium. However, metabolic conditions that increased this ratio [i.e., nitrogen starvation or l-methionine-d,l-sulfoximine (MSX) treatment] corresponded to high activity levels of NR, NiR, GS (except in MSX-treated cells) and glutamate synthase (GOGAT; EC 1.4.7.1). By contrast, metabolic conditions that diminished this ratio (i.e., addition of ammonium to nitrate-growing cells or addition of nitrate or ammonium to nitrogen-starved cells) resulted in low activity levels. The variation in the 2-oxoglutarate/glutamine ratio preceded the changes in enzyme activities. These results suggest that changes in the 2-oxoglutarate/glutamine ratio could be the signal that triggers the adaptation of P. laminosum cells to variations in the available nitrogen source, as occurs in enterobacteria.Abbreviations Chl chlorophyll - GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1) - GS glutamine synthetase (EC 6.3.1.2) - MSX l-methionine-d,l-sulfoximine - NiR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.7.7.2) - TP total protein This work has been partially supported by grants from the Spanish Ministry of Education and Science (DGICYT PB88-0300 and PB92-0464) and the University of the Basque Country (042.310-EC203/94). M.I.T. was the recipient of a fellowship from the Basque Government.  相似文献   

8.
In developing leaves of Pisum sativum the levels of ammonium did not change during the light-dark photoperiod even though asparaginase (EC 3.5.1.1) did; asparaginase activity in detached leaves doubled during the first 2.5 hours in the light. When these leaves were supplied with 1 millimolar methionine sulfoximine (MSX, an inhibitor of glutamine synthetase, GS, activity) at the beginning of the photoperiod, levels of ammonium increased 8-to 10-fold, GS activity was inhibited 95%, and the light-stimulated increase in asparaginase activity was completely prevented, and declined to less than initial levels. When high concentrations of ammonium were supplied to leaves, the light-stimulated increase of asparaginase was partially prevented. However, it was also possible to prevent asparaginase increase, in the absence of ammonium accumulation, by the addition of MSX together with aminooxyacetate (AOA, which inhibits transamination and some other reactions of photorespiratory nitrogen cycling). AOA alone did not prevent light-stimulated asparaginase increase; neither MSX, AOA, or elevated ammonium levels inhibited the activity of asparaginase in vitro. These results suggest that the effect of MSX on asparaginase increase is not due solely to interference with photorespiratory cycling (since AOA also prevents cycling, but has no effect alone), nor to the production of high ammonium concentration or its subsequent effect on photosynthetic mechanisms. MSX must have further inhibitory effects on metabolism. It is concluded that accumulation of ammonium in the presence of MSX may underestimate rates of ammonium turnover, since liberation of ammonium from systems such as asparaginase is reduced by the effects of MSX.  相似文献   

9.
Corynebacterium callunae (NCIB 10338) grows faster on glutamate than ammonia when used as sole nitrogen sources. The levels of glutamine synthetase (GS; EC 6.3.1.2) and glutamate synthase (GOGAT; EC 1.4.1.13) of C. callunae were found to be influenced by the nitrogen source. Accordingly, the levels of GS and GOGAT activities were decreased markedly under conditions of ammonia excess and increased under low nitrogen conditions. In contrast, glutamate dehydrogenase (GDH; EC 1.4.1.4) activities were not significantly affected by the type or the concentration of the nitrogen source supplied. The carbon source in the growth medium could also affect GDH, GS and GOGAT levels. Of the carbon sources tested in the presence of 2 mM or 10 mM ammonium chloride as the nitrogen source pyruvate, acetate, fumarate and malate caused a decrease in the levels of all three enzymes as compared with glucose. GDH, GS and GOGAT levels were slightly influenced by aeration. Also, the enzyme levels varied with the growth phase. Methionine sulfoximine, an analogue of glutamine, markedly inhibited both the growth of C. callunae cells and the transferase activity of GS. The apparent K m values of GDH for ammonia and glutamate were 17.2 mM and 69.1 mM, respectively. In the NADPH-dependent reaction of GOGAT, the apparent K m values were 0.1 mM for -ketoglutarate and 0.22 mM for glutamine.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase  相似文献   

10.
The purification and some properties of glutamine synthetase (GS) from the mycelium of the basidiomycete Pleurotus ostreatus are described. The enzyme was purified to apparent homogeneity with ion exchange chromatography and a Dyematrex Green A column as the major purification steps. The GS has a molecular weight of 470 kDa and is composed of eight subunits with a molecular weight of 58 kDa. A tetrameric form of the enzyme may also be active. The apparent K m values for the biosynthetic reaction varied in different mycelial extracts from 2.5 to 3.5 mM and from 0.02 to 0.06 for glutamate and ammonium respectively. In the transferase reaction, K m values of 48 mM and 6.2 mM were found for L-glutamine and hydroxylamine, respectively. From the divalent cations tested, Mn2+ showed the strongest stimulatory effect both on the transferase and the biosynthetic reaction. ADP was the only nucleotide having an activating effect on the transferase reaction. The biosynthetic reaction was strongly inhibited by AMP and the transferase reaction by carbamoylphosphate. L-Alanine and glycine inhibited both reactions. Received: 21 February 1996/Accepted: 12 March 1996  相似文献   

11.
To expand our knowledge about the relationship of nitrogen use efficiency and glutamine synthetase (GS) activity in the mangrove plant, a cytosolic GS gene from Avicennia marina has been heterologously expressed in and purified from Escherichia coli. Synthesis of the mangrove GS enzyme in E. coli was demonstrated by functional genetic complementation of a GS deficient mutant. The subunit molecular mass of GSI was ~40 kDa. Optimal conditions for biosynthetic activity were found to be 35 °C at pH 7.5. The Mg2+-dependent biosynthetic activity was strongly inhibited by Ni2+, Zn2+, and Al3+, whereas was enhanced by Co2+. The apparent K m values of AmGLN1 for the substrates in the biosynthetic assay were 3.15 mM for glutamate, and 2.54 mM for ATP, 2.80 mM for NH4 + respectively. The low affinity kinetics of AmGLN1 apparently participates in glutamine synthesis under the ammonium excess conditions.  相似文献   

12.
Glutamine synthetase from the unicellular cynabacterium Anacystis nidulans was found associated with the membrane fraction of cell-free extracts. The enzyme could be solubilized by treatment of the cell membranes with the detergent alkyltrimethylammoniun and was purified to electrophoretical homogeneity by using affinity chromatography on 2′,5′-ADP-Sepharose. The molecular weight of the native enzyme was approx. 575000 but only a single protein band of 47 kDa was detected after sodium dodecyl sulphate gel electrophoresis, which implies a native enzyme complex with twelve identically sized subunits. Values for apparent Michaelis constant of the purified enzyme for ammonium, glutamate and ATP were 20, 5000 and 700 μM, respectively. Alanine behaved as an inhibitor of both activities (transferase and biosynthetic) of glutamine synthetase, whereas aspartate, leucine and lysine inhibited the biosynthetic activity of the enzyme, and glycine and serine only inhibited the transferase activity. Glutamate analogs, such as hydroxylysine, methionine sulfone, methionine sulfoximine and phosphinothricin, which inhibited ammonium uptake in vivo, behaved as potent inhibitors of glutamine synthetase in vitro. A. nidulans glutamine synthetase was inhibited by p-hydroxymercuribenzoate, the effect being reversed by treatment with dithioerythritol, dithiothreitol or mercaptoethanol.  相似文献   

13.
P. A. Edge  T. R. Ricketts 《Planta》1978,138(2):123-125
Platymonas striata Butcher displays significant levels of glutamate synthase (GS) (EC 2.6.1.53) and glutamine synthetase (GOGAT) (EC 6.3.1.2.), but very low levels of glutamate dehydrogenase (GDH) (EC 1.4.1.4). This suggests that the GS/GOGAT pathway is important for nitrogen assimilation. The in vitro rates of enzyme activity can however only account for about 10% of the in vivo rates of nitrogen assimilation. Nitrogen-starvation reduced GS activity to undetectable levels. On nitrate or ammonium ion refeeding the cellular GS activity was rapidly restored, and reached levels of 56% and 91% greater than the unstarved values 24h after refeeding nitrate or ammonium respectively.Abbreviations NAR nitrate reductase - NIR nitrate reductase  相似文献   

14.
Glutamine synthetase (GS) from the cytoplasm of Lupinus luteus nodules was purified to apparent homogeneity using a final step of ADP-Sepharose affinity chromatography. Mercaptoethanol and divalent metals were essential to maintain the enzyme activity and keto compounds enhanced the stability during purification. From gel filtration a M, for the native enzyme of 347 000 was determined with subunits of 41 500 indicated by SDS-PAGE. The pH optima for the biosynthetic and transferase activities were 7.9 and 6.5 respectively. Mg2+-activated GS was strongly inhibited by Mn2+ and Ca2+; Co2+, while also inhibitory, allowed an alternate, more active form of GS after addition of glutamate. Activity was also inhibited by possible feedback inhibitors. The apparent Km values for glutamate, NH4+, ATP, glutamine, NH2OH and ADP were 8.58 mM, 12.5 μM, 0.22 mM, 48.6 mM, 3.37 mM and 59.7 nM respectively.  相似文献   

15.
Ammonium is assimilated in algae by the glutamine synthetase (GS)–glutamine:2‐oxoglutarate aminotransferase pathway. In addition to the assimilation of external ammonium taken up across the cell membrane, an alga may have to reassimilate ammonium derived from endogenous sources (i.e. nitrate reduction, photorespiration, and amino acid degradation). Methionine sulfoximine (MSX), an irreversible inhibitor of GS, completely inhibited GS activity in Ulva intestinalis L. after 12 h. However, assimilation of externally derived ammonium was completely inhibited after only 1–2 h in the presence of MSX and was followed by production of endogenous ammonium. However, endogenous ammonium production in U. intestinalis represented only a mean of 4% of total assimilation attributable to GS. The internally controlled rate of ammonium uptake (Vi) was almost completely inhibited in the presence of MSX, suggesting that Vi is a measure of the maximum rate of ammonium assimilation. After complete inhibition of ammonium assimilation in the presence of MSX, the initial or surge (Vs) rate of ammonium uptake in the presence of 400 μM ammonium chloride decreased by only 17%. However, the amount that the rate of ammonium uptake decreased by was very similar to the uninhibited rate of ammonium assimilation. In addition, the decrease in the rate of ammonium uptake in darkness (in the absence of MSX) in the presence of 400 μM ammonium chloride matched the decrease in the rate of ammonium assimilation. However, in the presence of 10 μM ammonium chloride, MSX completely inhibited ammonium assimilation but had no effect on the rate of uptake.  相似文献   

16.
Glutamate synthase (GOGAT) is one of the two important enzymes involved in the ammonium assimilation pathway glutamine synthetase (GS)/GOGAT, which enables Hfx. mediterranei to thrive in media with low ammonium concentration or containing just nitrate as single nitrogen source. The gene coding for this enzyme, gltS, has been sequenced, analysed and compared with other GOGATs from different organisms from the three domains of life. According to its amino acid sequence, Hfx. mediterranei GOGAT displays high homology with those from other archaeal halophilic organisms and with the bacterial alpha-like subunit. Hfx. mediterranei GOGAT and GS expression was induced under conditions of ammonium restriction. The GOGAT protein was found to be a monomer with a molecular mass of 163.78 kDa, which is consistent with that estimated by gel filtration, 198 ± 30 kDa. The enzyme is highly ferredoxin dependent: activity was only observed with one of the two different 2Fe–2S ferredoxins chromatographically isolated from Hfx. mediterranei. The enzyme also displayed typical halophilic behaviour, being fully stable, and producing maximal activity, at salt concentrations from 3 to 4 M NaCl, pH 7.5 and a temperature of 50 °C.  相似文献   

17.
The mycelium of the wood-rotting fungus,P. ostreatus, contains NAD-dependent glutamate synthase inhibited by azaserine.l-Glutamine andl-glutamate are the most important free amino acids in the mycelium. Feeding of the mycelium with nitrogenous substrates showed thatl-glutamate,l-aspartate andl-alanine are interconnected by way of transaminases. After the inhibition of glutamine synthetase by methionine-S-sulfoximine the synthesis ofl-glutamate was inhibited and the level of all free amino acids decreased. The15N-NMR spectra of mycelia after the addition of15NH4Cl confirmed that the GS/GOGAT is the only pathway of ammonia assimilation inP. ostreatus and NAD-glutamate dehydrogenase should be the deaminating enzyme.  相似文献   

18.
Anti-glutamine synthetase serum was raised in rabbits by injecting purified glutamine synthetase (GS) of the phototrophic bacterium Rhodopseudomonas capsulata E1F1. The antibodies were purified to monospecificity by immunoaffinity chromatography in GS-sepharose gel. These anti-GS antibodies were used to measure the antigen levels in crude extracts from bacteria, grown phototrophically with dinitrogen, nitrate, nitrite, ammonia, glutamate, glutamine or alanine as nitrogen sources. The amount of GS detected by rocket immunoelectrophoresis was proportional to Mn2+-dependent transferase activity measured in the crude extracts. Addition of GS inhibitor l-methionine-d,l-sulfoximine (MSX) to the actively growing cells promoted increased antigen levels, that were not found in the presence of glutamine or chloramphenicol. The ammonia-induced decrease in GS relative levels was reverted by MSX. GS levels remained constant when phototrophically growing cells were kept in the dark.Abbreviations GS glutamine synthetase - MOPS 2-(N-morpholine) propane sulfonate - MSX l-methionine-d,l-sulfoximine  相似文献   

19.
Abstract Glutamine uptake in the cyanobiont Nostoc ANTH was energy-dependent and repressed in ammonia-grown cells. l -Methionine- dl -sulphoximine (MSX), a glutamate analogue and an inhibitor of glutamine synthetase (GS), did not affect glutamine uptake whereas azaserine, an inhibitor of glutamate synthase (GOGAT) did, suggesting that GS activity is not necessarily involved in the glutamine uptake system and that increased intracellular glutamine level regulates its own uptake. Repression of glutamine uptake by ammonia did not require de novo protein synthesis but required GS activity, suggesting that ammonia itself was not the repressor signal. The derepression of the glutamine uptake system did not require GS activity but required de novo protein synthesis.  相似文献   

20.
The physiology of ammonia assimilation enzymes was examined inBacillus sp. FE-1, a thermophilic marine bacterium. Glutamine synthetase (GS) and glutamate synthase (GOGAT) activities varied with the nitrogen source present in the medium, ranging as much as 10-fold for the former and 2.5-fold for the latter. Glutamate dehydrogenase (GDH) was detected but, under the growth conditions studied, levels were not affected by the nitrogen source. Anaerobic growth in the presence of nitrate yielded enzyme levels that were not significantly different from those measured under aerobic growth. Partially purified GS exhibited a temperature optimum between 65° and 75°C. The enzyme's Mn2+-dependent reverse transferase activity was stimulated by K2SO4 and demonstrated some tolerance to NaCl. Hyperbolic kinetics were observed for ammonium, with an apparentK M of 1.0mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号