首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Removal of phosphorus (P) by Ceratophyllum demersum L. and associated epiphytic periphyton was quantified by measuring the disappearance of soluble reactive P (SRP) from microcosms during 1-h in situ incubations conducted over a 1-year period. Initial P concentrations in these incubations ranged from 30 to >10,000 μg P L−1. Phosphorus removal was proportional to initial P concentrations and was weakly correlated with solar irradiance and water temperature. Removal rates (0.6–32.8 mg P m−2 d−1) and kv coefficients (0.68–1.93 h−1) from experiments run at low initial P concentrations (up to 200 μg P L−1) were comparable to results reported for other macrophytes. Removal rates from experiments run at the highest (>10,000 μg P L−1) initial P concentrations (5300 and 11,100 mg P m−2 d−1) most likely represented luxury nutrient consumption and were not thought to be sustainable long term. We were unable to determine a Vmax for P removal, suggesting that the nutrient-storage capability of the C. demersum/periphyton complex was not saturated during our short-term incubations. Based on N:P molar ratios, the marsh was P limited, while the C. demersum/periphyton complex was either N limited or in balance for N and P throughout this study. However, despite its tissue stoichiometry, the C. demersum/periphyton complex always exhibited an affinity for P. It appeared that the biochemical mechanisms, which mediate P removal, at least on a short-term basis, were more influenced by increases in ambient P levels than by tissue nutrient stoichiometry.  相似文献   

2.
Livestock significantly affect wetland soils and vegetation but their impacts on wetland nutrient dynamics are poorly understood. We set up a full factorial laboratory experiment to assess the effects of Juncus effusus, grazing exclusion, and flooding on P flux from intact cores collected from seasonal wetlands in cattle pastures in south Florida. We collected intact cores from Juncus tussocks and plant interspaces inside and outside 4-year grazing exclosures in five replicate wetlands. We incubated the cores for 50 days under continuous flooding or weekly 1-day flooding cycles and measured P concentrations in surface and pore water. Grazing exclosures had less Juncus (17%) and bare ground (2%) than adjacent grazed areas (Juncus, 48%; bare ground, 12%), but did not affect P fluxes. Initial fluxes of soluble reactive P (SRP) were much higher in cores with Juncus (242 ± 153 mg P m−2 day−1) than without Juncus (14 ± 20 mg P m−2 day−1). In weekly flooded cores P fluxes fell to 19.7 ± 13.4 mg P m−2 day−1 in cores with and 2.7 ± 2.6 in cores without Juncus. The strong effect of Juncus on P flux was an indirect effect of cattle grazing, but 4 years of grazing exclusion did not have a significant effect on P fluxes.  相似文献   

3.
A phosphorus (P) loading experiment conducted in the oligotrophic P-limited Everglades was used to assess the utility of phosphatase activity (PA) of periphyton as an early warning (EW) indicator of wetland eutrophication. Phosphorus loads of 0, 0.4, 0.8, 1.6, 3.2, 6.4 and 12.8 g P m–2 yr–1 were applied to mesocosms placed in a slough community consisting of Cladium jamaicense Crantz, Eleocharis spp. and calcareous periphyton mats. Phosphatase activity, expressed on a biomass-specific basis, was not a sensitive indicator of P enrichment for epiphytic periphyton growing on acrylic dowels or floating mat periphyton. However, surface-area-specific PA was a sensitive indicator of P enrichment, responding within 2–3 weeks of the initiation of dosing. Surface-area-specific PA of unenriched periphyton ranged from 0.42 to 0.7 nmol cm–2 min–1, while PA of periphyton growing in the highest load (12.8 g P m–2 yr–1), ranged from 0.11 to 0.29 nmol cm–2 min–1. Conclusions drawn from PA analyses were consistent with those obtained from periphyton primary productivity and P content. Phosphatase activity is a potentially valuable EW indicator when used in conjunction with other complementary indicators.  相似文献   

4.
Two bed media were tested (gravel and Filtralite) in shallow horizontal subsurface flow (HSSF) constructed wetlands in order to evaluate the removal of ammonia and nitrate for different types of wastewater (acetate-based and domestic wastewater) and different COD/N ratios. The use of Filtralite allowed both higher mass removal rates (1.1 g NH4–N m−2 d−1 and 3 g NO3–N m−2 d−1) and removal efficiencies (>62% for ammonia, 90–100% for nitrate), in less than 2 weeks, when compared to the ones observed with gravel. The COD/N ratio seems to have no significant influence on nitrate removal and the removal of both ammonia and nitrate seems to have involved not only the conventional pathways of nitrification–denitrification. The nitrogen loading rate of both ammonia (0.8–2.4 g NH4–N m−2 d−1) and nitrate (0.6–3.2 g NO3–N m−2 d−1) seem to have influenced the respective removal rates.  相似文献   

5.
High strength milk permeate derived from ultra-filtration based cheese making process was treated in an anaerobic moving bed biofilm reactor (AMBBR) under mesophilic (35 °C) condition. Total chemical oxygen demand (TCOD) removal efficiencies of 86.3–73.2% were achieved at organic loading rates (OLR) of 2.0–20.0 g TCOD L−1 d−1. A mass balance model gave values of methane yield coefficient (YG/S) and cell maintenance coefficient (km) of 0.341 L CH4 g−1 TCODremoved and 0.1808 g TCODremoved g−1 VSS d−1, respectively. The maximum substrate utilization rate Umax was determined as 89.3 g TCOD L−1 d−1 by a modified Stover–Kincannon model. Volumetric methane production rates (VMPR) were shown to correlate with the biodegradable TCOD concentration through a Michaelis–Menten type equation. Moreover, based on VMPR and OLR removed from the reactor, the sludge production yield was determined as 0.0794 g VSS g−1 TCODremoved.  相似文献   

6.
The use of periphyton nitrogenase activity (biological N2 fixation) as an indicator of wetland P impact was assessed using patterns of nutrient content (C, N, P, Ca, Mg, K, Fe, and Mn) and acetylene reduction (AR) in floating cyanobacterial periphyton mat (metaphyton) communities of a P-enriched portion of the Florida Everglades, USA (Water Conservation Area-2A, WCA-2A). Spatial patterns of nutrients indicate the enrichment of floating mat periphyton N, P, Fe, and K, and the reduction of Mn and TN:TP in enriched marsh areas. In highly enriched areas, floating mat periphyton AR was approximately threefold greater than that in less enriched, interior marsh zones. Multiple regression models indicated AR dependence on P in eutrophic WCA-2A areas while the AR of more interior marsh periphyton mats was more closely related to tissue levels of Ca and Fe. Nitrogenase activity of floating mat periphyton from P-loaded mesocosms revealed a significant enhancement of N2 fixation in samples receiving approximately 2–3 mg P m−2 of cumulative P dosing or with biomass TP content of 100–300 mg kg−1. At P contents above the optimum, mat periphyton AR was suppressed possibly as a result of changes in species composition or increased levels of NH4+. After 3 years of dosing, consistently high AR occurred only at low rates of P enrichment (0.4–0.8 g P m−2 yr−1), and the patterns appeared to be seasonal. These findings agree with the hypothesis that P availability is a key determinant of nitrogenase activity in aquatic systems, and thus, may support the use of periphyton nitrogenase to indicate P impacts in P-limited systems. These results also demonstrate the potential existence of a P threshhold for biogeochemical alteration of periphyton mat function in the Everglades, and that cumulative loading of limiting nutrients (i.e., P), rather than instantaneous concentrations, should be considered when evaluating nutrient criteria.  相似文献   

7.
Tropical island stream ecosystems continue to be threatened by increasing anthropogenic demands for freshwater, with many streams dammed or diverted. Stream flow amendments can have substantial effects on aquatic insect populations of tropical archipelagoes. In Hawaiian streams, an endemic Diptera community of the following genera dominates cascades and other torrential habitats: Telmatogeton Schiner (Chironomidae), Procanace Hendel (Canacidae), Scatella Robineau-Desvoidy (Ephydridae). Larval densities, standing stock biomass (SSB, as ash-free dry mass [AFDM]), and monthly secondary production of Telmatogeton and Procanace were measured during two summers of significantly different stream discharge in Iao Valley, Maui, Hawaii. Very few Scatella larvae were collected (<20 larvae for both years combined), so they were omitted from subsequent analyses. Stream discharge decreased approximately 40% from 1994 to 1995, providing a ‘natural test’ of the effects of reduced stream flow on these torrenticolous populations between two years. Combined Telmatogeton and Procanace SSB (total torrential community SSB) was 3176 and 1683 mg AFDM m−2 for 1994 and 1995, respectively, with Telmatogeton accounting for >95% in both years due to significantly larger body size and high density. The SSB of Telmatogeton significantly decreased from 3138 to 1622 mg AFDM m−2 from 1994 to 1995 but increased for Procanace (37.6–60.9 mg AFDM m−2, respectively). Total torrential community secondary production was 31% lower in 1994 (12,833 mg AFDM m−2 mo−1) compared to 1995 (8855 mg AFDM m−2 mo−1), reflecting the Telmatogeton proportion of total community production (99%); however, Procanace production increased by 40%. Monthly P/B ratios indicated that biomass turnover was generally high and increased for Telmatogeton from 1994 (3.8) to 1995 (5.1), whereas it remained lower and did not change between years for Procanace (1.7). A natural drought of the Iao Stream valley was associated with structural and functional changes in two endemic aquatic insects; these results are a conservative indication of permanent stream flow reductions from anthropogenic withdrawal (e.g., dams and diversions).  相似文献   

8.
Biomass, primary production and nutrient budgets associated to Sarcocornia perennis subspecies (ssp.) alpini were studied in the Palmones River estuary salt marsh (Southern Spain) to evaluate the nutrient sequestration capacity of the low marsh. Above- and belowground living and dead biomass, as well as carbon, nitrogen and phosphorus content were monitored during 1 year. Additionally, the fate of aboveground detritus was evaluated in an experiment on litter decomposition. The detritus production of S. perennis ssp. alpini was almost equivalent to its annual primary production indicating a rapid turnover of biomass. We calculated that only 12% of the aboveground detritus was exported out of the low marsh while the rest was decomposed in the sediment with a rate of 0.8 year−1. Changes in concentrations of total carbon, nitrogen and phosphorus in the sediment showed patterns related to S. perennis ssp. alpini belowground biomass. Our results suggested that the sediment functions as a net sink for nutrients accumulating 550 g C m−2 year−1, 55 g N m−2 year−1, and 13 g P m−2 year−1.  相似文献   

9.
The spatial-temporal distribution of a dinoflagellate bloom dominated or co-dominated by Prorocentrum minimum was examined during autumn through early spring in a warm temperate, eutrophic estuary. The developing bloom was first detected from a web-based alert provided by a network of real-time remote monitoring (RTRM) platforms indicating elevated dissolved oxygen and pH levels in upper reaches of the estuary. RTRM data were used to augment shipboard sampling, allowing for an in-depth characterization of bloom initiation, development, movement, and dissipation. Prolonged drought conditions leading to elevated salinities, and relatively high nutrient concentrations from upstream inputs and other sources, likely pre-disposed the upper estuary for bloom development. Over a 7-month period (October 2001–April 2002), the bloom moved toward the northern shore of the mesohaline estuary, intensified under favorable conditions, and finally dissipated after a major storm. Bloom location and transport were influenced by prevailing wind structure and periods of elevated rainfall. Chlorophyll a within bloom areas averaged 106 ± 13 μg L−1 (mean ± 1 S.E.; maximum, 803 μg L−1), in comparison to 20 ± 1 μg L−1 outside the bloom. There were significant positive relationships between dinoflagellate abundance and TN and TP. Ammonium, NO3, and SRP concentrations did not decrease within the main bloom, suggesting that upstream inputs and other sources provided nutrient-replete conditions. In addition, PAM fluorometric measurements (09:00–13:00 h) of maximal PSII quantum yield (Fv/Fm) were consistently 0.6–0.8 within the bloom until late March, providing little evidence of photo-physiological stress as would have been expected under nutrient-limiting conditions. Nitrogen uptake kinetics were estimated for P. minimum during the period when that species was dominant (October–December 2001), based on literature values for N uptake by an earlier P. minimum bloom (winter 1999) in the Neuse Estuary. The analysis suggests that NH4+ was the major N species that supported the bloom. Considering the chlorophyll a concentrations during October and December and the estimated N uptake rates, phytoplankton biomass was estimated to have doubled once per day. Bloom displacement (January–February) coincided with higher diversity of heterotrophic dinoflagellate species as P. minimum abundance decreased. This research shows the value of RTRM in bloom detection and tracking, and advances understanding of dinoflagellate bloom dynamics in eutrophic estuaries.  相似文献   

10.
This study deals with a recently found phenomenon in the northern Baltic Sea: the occurrence of the dinoflagellate Dinophysis acuminata in the deep water below the thermocline. This was first observed in July 2001 at the station BY 15 in the Gotland Deep, where a sharp and intensive chlorophyll fluorescence signal was encountered at 77 m depth. The fluorescence peak was due to a dinoflagellate community dominated by Dinophysis acuminata (approximately 18 000 cells l−1). The survival of this community was followed in laboratory incubations in low light (20 μE m−2 s−1) and low temperature (+5 °C). After 5 weeks incubation, 67–84% of the initial cell abundance was lost, while few D. acuminata cells survived up to 24 weeks in the original sample. During the incubation, the fluorescence signal of the cells became fainter and the chloroplasts smaller and aggregated. On two occasions a D. acuminata cell was found attached to a smaller cell by a thin cytoplasm strand, possibly indicating mixotrophic behavior. During the following summer (2002), the photosynthetic efficiency of D. acuminata collected from thermocline layers of few stations and from the nitracline (75–80 m) at one station was studied in photosynthesis irradiance (P–E) incubations. Photosynthetic activity occurred in all populations, with differences in their photosynthetic carbon uptake rates. Photosynthesis of D. acuminata populations was saturated between 250 and 500 μE m−2 s−1; maximum cell-specific carbon uptake rates (Pm) ranged from 160–925 pg C cell−1 h−1. The Pm-rates in populations originating below the thermocline and in an artificially darkened population were markedly lower than in populations from upper water layers. The varying maximum photosynthetic rates of these populations may reflect their history, e.g. time spent in different light environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号