首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured chest wall "pathway impedances" (ratios of pressure changes to rates of volume displacement at the surface) with esophageal and gastric balloons and inductance plethysmographic belts around the rib cage and abdomen during forced volume oscillations (5% vital capacity, 0.5-4 Hz) at the mouth of five relaxed, seated subjects. Volume displacements of the total chest wall surface, measured by summing the rib cage and abdominal signals, approximated measurements using volume-displacement, body plethysmography over the entire frequency range. Resistance (R) and elastance (E) of the diaphragm-abdomen pathway were several times greater than those of the rib cage pathway, except at the highest frequencies where diaphragm-abdominal E was small. R and E of the diaphragm-abdomen pathway and of the rib cage pathway showed the same frequency dependencies as that of the total chest wall: R decreased markedly as frequency increased, and E (especially in the diaphragm-abdomen) decreased at the highest frequencies. These results suggest that the chest wall can be reasonably modeled, over the frequency range studied, as a system with two major pathways for displacement. Each pathway seems to exhibit behavior that reflects nonlinear, rate-independent dissipation as well as viscoelastic properties. Impedances of these pathways are useful indexes of changes in chest wall mechanical behavior in different situations.  相似文献   

2.
3.
To understand how bical mechanical chest wall (CW) properties are related to those of the CW as a whole, we measured esophageal and gastric pressures, CW volume changes (measured with a head-out body plethysmograph), and anteroposterior and transverse CW diameter changes (measured with magnetometers attached to the surface) during sinusoidal forcing at the mouth (2.5% vital capacity, 0.5-10 Hz) in four healthy subjects. Total CW resistance decreased sharply as frequency rose to 3-4 Hz and remained relatively constant at higher frequencies. Total CW reactance became less negative with increasing frequency but showed no tendency to change sign. Above 2 Hz, diameters measured at different locations changed asynchronously between and within the rib cage and abdomen. "Local pathway impedances" (ratios of esophageal or gastric pressure to a rate of diameter change) showed frequency dependence similar to that of the total CW less than 3 Hz. Local pathway impedances increased during contraction of respiratory muscles acting on the pathway. We conclude that 1) total CW behavior is mainly a reflection of its individual local properties at less than or equal to 3 Hz, 2) local impedances within the rib cage or within the abdomen can change independently in some situations, and 3) asynchronies that develop within the CW during forcing greater than 3 Hz suggest that two compartments may be insufficient to describe CW properties from impedance measurements.  相似文献   

4.
Viscoplasticity of respiratory tissues   总被引:2,自引:0,他引:2  
Low-frequency mechanical behavior of various respiratory tissues shows certain similarities. In this study we test the hypothesis that rate-independent plastic processes along with rate-dependent viscoelastic processes are responsible. We considered oscillatory responses of several respiratory tissues measured over prescribed ranges of frequency (up to 6 Hz) and amplitude of forcing. These included the excised cat lung, the human chest wall in vivo, and two components of the chest wall: the excised dog rib cage and the excised rabbit abdominal viscera; some data were previously reported and some are new. We analyzed these data using the viscoplastic model of Hildebrandt (J. Appl. Physiol. 28: 365-372, 1970). It consists of three compartments: a plastoelastic compartment mechanically in parallel with a viscoelastic compartment, both in series with a lumped inertia. We fitted oscillatory data of the above respiratory tissues to the model by a least-squares technique. The fit was qualitatively consistent with the observations and exhibited moderately good to very good quantitative correspondence. As an independent verification of this approach, we obtained the stress relaxation after a step-volume change. Based on the oscillatory response of cat lungs, the calculated stress relaxation function was found to be generally consistent with corresponding observations. This study indicates that both plasticity and viscoelasticity appear to be important determinants of mechanical behavior of respiratory tissues at low frequencies and that inertial effects are negligible.  相似文献   

5.
We examined chest wall and rib cage configuration in seven normal subjects during a variety of breathing maneuvers. Magnetometers were used to measure lower rib cage anteroposterior, lower rib cage transverse, upper rib cage anteroposterior, and abdomen anteroposterior diameters. Changes of these diameters were recorded during voluntary maneuvers, rebreathing, reading, and "natural" breathing. Relative motion of the rib cage and abdomen was displayed with the rib cage represented by the product of its lower anteroposterior and transverse diameters. During spontaneous breathing the rib cage and chest wall are near their relaxation configuration. During chemically driven ventilation the chest wall and rib cage progressively depart from this configuration. Much greater distortions of the chest wall and rib cage occurred during some voluntary maneuvers. Additionally, esophageal pressure and gastric pressure were measured during voluntary distortion of the rib cage. Substantial changes in lower rib cage shape occurred during voluntary maneuvers when compared with spontaneous breaths at the same transmural pressure. We conclude that the unitary behavior of the rib cage in normal subjects requires muscle coordination.  相似文献   

6.
We simultaneously evaluated the mechanical response of the total respiratory system, lung, and chest wall to changes in posture and to bronchoconstriction. We synthesized the optimal ventilation waveform (OVW) approach, which simultaneously provides ventilation and multifrequency forcing, with optoelectronic plethysmography (OEP) to measure chest wall flow globally and locally. We applied an OVW containing six frequencies from 0.156 to 4.6 Hz to the mouth of six healthy men in the seated and supine positions, before and after methacholine challenge. We measured mouth, esophageal, and transpulmonary pressures, airway flow by pneumotachometry, and total chest wall, pulmonary rib cage, and abdominal volumes by OEP. We computed total respiratory, lung, and chest wall input impedances and the total and regional transfer impedances (Ztr). These data were appropriately sensitive to changes in posture, showing added resistance in supine vs. seated position. The Ztr were also highly sensitive to lung constriction, more so than input impedance, as the former is minimally distorted by shunting of flow into alveolar gas compression and airway walls. Local impedances show that, during bronchoconstriction and at typical breathing frequencies, the contribution of the abdomen becomes amplified relative to the rib cage. A similar redistribution occurs when passing from seated to supine. These data suggest that the OEP-OVW approach for measuring Ztr could noninvasively track important lung and respiratory conditions, even in subjects who cannot cooperate. Applications might range from routine evaluation of airway hyperreactivity in asthmatic subjects to critical conditions in the supine position during mechanical ventilation.  相似文献   

7.
Relative strengths of the chest wall muscles   总被引:1,自引:0,他引:1  
We hypothesized that during maximal respiratory efforts involving the simultaneous activation of two or more chest wall muscles (or muscle groups), differences in muscle strength require that the activity of the stronger muscle be submaximal to prevent changes in thoracoabdominal configuration. Furthermore we predicted that maximal respiratory pressures are limited by the strength of the weaker muscle involved. To test these hypotheses, we measured the pleural pressure, abdominal pressure (Pab), and transdiaphragmatic pressure (Pdi) generated during maximal inspiratory, open-glottis and closed-glottis expulsive, and combined inspiratory and expulsive maneuvers in four adults. We then determined the activation of the diaphragm and abdominal muscles during selected maximal respiratory maneuvers, using electromyography and phrenic nerve stimulation. In all subjects, the Pdi generated during maximal inspiratory efforts was significantly lower than the Pdi generated during open-glottis expulsive or combined efforts, suggesting that rib cage, not diaphragm, strength limits maximal inspiratory pressure. Similarly, at high lung volumes, the Pab generated during closed-glottis expulsive efforts was significantly greater than that generated during open-glottis efforts, suggesting that the latter pressure is limited by diaphragm, not abdominal muscle, strength. As predicted, diaphragm activation was submaximal during maximal inspiratory efforts, and abdominal muscle activation was submaximal during open-glottis expulsive efforts at midlung volume. Additionally, assisting the inspiratory muscles of the rib cage with negative body-surface pressure significantly increased maximal inspiratory pressure, whereas loading the rib cage muscles with rib cage compression decreased maximal inspiratory pressure. We conclude that activation of the chest wall muscles during static respiratory efforts is determined by the relative strengths and mechanical advantage of the muscles involved.  相似文献   

8.
Although volumetric displacements of the chest wall are often analyzed in terms of two independent parallel pathways (rib cage and abdomen), Loring and Mead have argued that these pathways are not mechanically independent (J. Appl. Physiol. 53: 756-760, 1982). Because of its apposition with the diaphragm, the rib cage is exposed to two distinct pressure differences, one of which depends on abdominal pressure. Using the analysis of Loring and Mead as a point of departure, we developed a complementary analysis in which mechanical coupling of the rib cage, abdomen, and diaphragm is modeled by a linear translational transformer. This model has the advantage that it possesses a precise electrical analogue. Pressure differences and compartmental displacements are related by the transformation ratio (n), which is the mechanical advantage of abdominal over pleural pressure changes in displacing the rib cage. In the limiting case of very high lung volume, n----0 and the pathways uncouple. In the limit of very small lung volume, n----infinity and the pathways remain coupled; both rib cage and abdomen are driven by abdominal pressure alone, in accord with the Goldman-Mead hypothesis. A good fit was obtained between the model and the previously reported data for the human chest wall from 0.5 to 4 Hz (J. Appl. Physiol. 66:350-359, 1989). The model was then used to estimate rib cage, diaphragm, and abdominal elastance, resistance, and inertance. The abdomen was a high-elastance high-inertance highly damped compartment, and the rib cage a low-elastance low-inertance more lightly damped compartment. Our estimate that n = 1.9 is consistent with the findings of Loring and Mead and suggests substantial pathway coupling.  相似文献   

9.
Chest wall motion of infants during spinal anesthesia   总被引:1,自引:0,他引:1  
To test the extent to which diaphragmatic contraction moves the rib cage in awake supine infants during quiet breathing, we studied chest wall motion in seven prematurely born infants before and during spinal anesthesia for inguinal hernia repair. Infants were studied at or around term (postconceptional age 43 +/- 8 wk). Spinal anesthesia produced a sensory block at the T2-T4 level, with concomitant motor block at a slightly lower level. This resulted in the loss of most intercostal muscle activity, whereas diaphragmatic function was preserved. Rib cage and abdominal displacements were measured with respiratory inductance plethysmography before and during spinal anesthesia. During the anesthetic, outward inspiratory rib cage motion decreased in six infants (P less than 0.02, paired t test); four of these developed paradoxical inward movement of the rib cage during inspiration. One infant, the most immature in the group, had inward movement of the rib cage both before and during the anesthetic. Abdominal displacements increased during spinal anesthesia in six of seven infants (P less than 0.05), suggesting an increase in diaphragmatic motion. We conclude that, in the group of infants studied, outward rib cage movement during awake tidal breathing requires active, coordinated intercostal muscle activity that is suppressed by spinal anesthesia.  相似文献   

10.
The interaction of forces that produce chest wall motion and lung volume change is complex and incompletely understood. To aid understanding we have developed a simple model that allows prediction of the effect on chest wall motion of changes in applied forces. The model is a lever system on which the forces generated actively by the respiratory muscles and passively by impedances of rib cage, lungs, abdomen, and diaphragm act at fixed sites. A change in forces results in translational and/or rotational motion of the lever; motion represents volume change. The distribution and magnitude of passive relative to active forces determine the locus and degree of rotation and therefore the effect of an applied force on motion of the chest wall, allowing the interaction of diaphragm, rib cage, and abdomen to be modeled. Analysis of moments allow equations to be derived that express the effect on chest wall motion of the active component in terms of the passive components. These equations may be used to test the model by comparing predicted with empirical behavior. The model is simple, appears valid for a variety of respiratory maneuvers, is useful in interpreting relative motion of rib cage and abdomen and may be useful in quantifying the effective forces acting on the rib cage.  相似文献   

11.
Allen et al. (J. Clin. Invest. 76: 620-629, 1985) reported that during oscillatory forcing the base of isolated canine lungs distends preferentially relative to the apex as frequency and tidal volume increase. The tendency toward such nonuniform phasic lung distension might influence phasic displacement of the rib cage (RC) relative to the abdomen (ABD). To test this hypothesis we measured RC and ABD displacement in four anesthetized dogs during forced oscillation. Sinusoidal volume changes were delivered through a tracheostomy at 1-32 Hz and measured by body plethysmography. RC and ABD displacements were measured by inductive plethysmography. During oscillation with air at fixed tidal volumes (10-80 ml) RC, normalized to unity at 1 Hz, increased to 2.06-2.22 at 8 Hz (P less than 0.001) and then decreased to 1.06-1.35 (P less than 0.0025) at 32 Hz. ABD, normalized to unity at 1 Hz, was 1.12-1.16 at 4 Hz (P less than 0.001) and decreased to 0.12-0.14 at 32 Hz (P less than 0.001). Displacement of ABD relative to RC did not increase systematically with increasing tidal volume during sinusoidal forcing at any frequency. Thus we found no discernible influence of nonuniform phasic lung distension on chest wall behavior. We infer that in the dog the nonuniform mechanical behavior of the chest wall dominates the nonuniform (but opposing) mechanical tendency of the lung.  相似文献   

12.
The volume displacements of the rib cage and abdomen of relaxed seated subjects were measured as functions of pleural pressure with the chest wall expanded by airway pressure and with the chest wall distorted by an external force applied to the rib cage. From the measured displacements for the two independent loads, the three compliances that describe the mechanical properties of the relaxed chest wall modeled as a linear elastic system with two degrees of freedom were obtained. The cross compliance that describes the coupling between the rib cage and abdomen was found to be small and positive, 0.01-0.02 1/cmH2O. The displacement of the rib cage by the external force was consistent with the displacement predicted by use of standard methods for calculating the mechanical advantage of the force.  相似文献   

13.
To determine the influence of body position on chest wall and pulmonary function, we studied the ventilatory, pulmonary mechanics, and thoracoabdominal motion profiles in 20 preterm infants recovering from respiratory disease who were positioned in both the supine and prone position. Thoracoabdominal motion was assessed from measurements of relative rib cage and abdominal movement and the calculated phase angle (an index of thoracoabdominal synchrony) of the rib and abdomen Lissajous figures. The ventilatory and pulmonary function profiles were assessed from simultaneous measurements of transpulmonary pressure, airflow, and tidal volume. The infants were studied in quiet sleep, and the order of positioning was randomized across patients. The results demonstrated no significant difference in ventilatory and pulmonary function measurements as a function of position. In contrast, there was a significant reduction (-49%) in the phase angle of the Lissajous figures and an increase (+66%) in rib cage motion in prone compared with the supine position. In addition, the degree of improvement in phase angle in the prone position was correlated to the severity of asynchrony in the supine position. We speculate that the improvement in thoracoabdominal synchrony in the prone position is related to alterations of chest wall mechanics and respiratory muscle tone mediated by a posturally related shift in the area of apposition of the diaphragm to the anterior inner rib cage wall and increase in passive tension of the muscles of the rib cage. This study suggests that the mechanical advantage associated with prone positioning may confer a useful alternative breathing pattern to the preterm infant in whom elevated respiratory work loads and respiratory musculoskeletal immaturity may predispose to respiratory failure.  相似文献   

14.
We have determined the mechanical effects of immersion to the neck on the passive chest wall of seated upright humans. Repeated measurements were made at relaxed end expiration on four subjects. Changes in relaxed chest wall configuration were measured using magnetometers. Gastric and esophageal pressures were measured with balloon-tipped catheters in three subjects; from these, transdiaphragmatic pressure was calculated. Transabdominal pressure was estimated using a fluid-filled, open-tipped catheter referenced to the abdomen's exterior vertical surface. We found that immersion progressively reduced mean transabdominal pressure to near zero and that the relaxed abdominal wall was moved inward 3-4 cm. The viscera were displaced upward into the thorax, gastric pressure increased by 20 cmH2O, and transdiaphragmatic pressure decreased by 10-15 cmH2O. This lengthened the diaphragm, elevating the diaphragmatic dome 3-4 cm. Esophageal pressure became progressively more positive throughout immersion, increasing by 8 cmH2O. The relaxed rib cage was elevated and expanded by raising water from hips to lower sternum; this passively shortened the inspiratory intercostals and the accessory muscles of inspiration. Deeper immersion distorted the thorax markedly: the upper rib cage was forced inward while lower rib cage shape was not systematically altered and the rib cage remained elevated. Such distortion may have passively lengthened or shortened the inspiratory muscles of the rib cage, depending on their location. We conclude that the nonuniform forcing produced by immersion provides unique insights into the mechanical characteristics of the abdomen and rib cage, that immersion-induced length changes differ among the inspiratory muscles according to their locations and the depth of immersion, and that such length changes may have implications for patients with inspiratory muscle deficits.  相似文献   

15.
To assess changes in total and regional chest wall properties during nonrespiratory maneuvers, we measured electromyographic activity of various chest wall muscles, esophageal pressure, and rib cage and abdominal surface displacements in six subjects before and during various static tasks. Subjects were seated at functional residual capacity, and quasi-sinusoidal forcing at the mouth (0.4 Hz, 500 ml) was imposed during the maneuver in the absence of active breathing. Magnitude of total chest wall impedance (magnitude of Zw) increased with effort during all maneuvers; changes in phase were small. Maneuvers involving primarily muscles of the neck and rib cage--holding a 10-kg weight, 10 kg of isometric tension between the arms, and isometric neck flexion--roughly doubled the magnitude of rib cage impedance (magnitude of Zrc) and, to a lesser degree, increased magnitude of diaphragm-abdomen impedance (magnitude of Zd-a). Unilateral and bilateral leg lifts, in addition to increasing magnitude of Zd-a, increased magnitude of Zrc. Passive 90 degrees rotation of the torso caused approximately 25% increases in magnitude of Zrc and magnitude of Zd-a; if the rotation was actively maintained by the trunk muscles, both regional impedances increased over 100%. Increases in magnitude of regional impedance were correlated to increases in regional electromyographic activity; changes in phase were small. Passive restriction of rib cage displacement by strapping increased magnitude of Zrc and magnitude of Zw but not magnitude of Zd-a, whereas abdominal strapping increased magnitude of Zd-a but did not affect magnitude of Zrc or magnitude of Zw.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
An earlier model for the study of rib cage mechanics was modified so that rib deformity in scoliosis could be better represented. The rigid ribs of that model were replaced by five-segment deformable ribs. Literature data on cadaver rib mechanical behavior were used to assign stiffnesses to the new individual model ribs so that experimental and model rib deflections agreed. Shear and tension/compression stiffnesses had little effect on individual rib deformation, but bending stiffnesses had a major effect. Level-to-level differences in mechanical behavior could be explained almost exclusively by level to level differences in the rib shape. The model ribs were then assembled into a whole rib cage. Computer simulations of whole rib cage behaviors, both in vivo and in vitro, showed a reasonable agreement with the measured behaviors. The model was used to study rib cage mechanics in two scolioses, one with a 43 degrees and the other with a 70 degrees Cobb angle. Scoliotic rib cage deformities were quantified by parameters measuring the rib cage lateral offset, rib cage axial rotation, rib cage volume and rib distortion. Rib distortion was quantified both in best-fit and simulated computer tomography (CT) scan planes. Model rib distortion was much smaller in best-fit planes than in CT planes. The total rib cage volume changed little in the presence of the scolioses, but it became asymmetrically distributed.  相似文献   

17.
The abdominal muscles expand the rib cage when they contract alone. This expansion opposes the deflation of the lung and may be viewed as pressure dissipation. The hypothesis was raised, therefore, that alterations in rib cage elastance should affect the lung deflating action of these muscles. To test this hypothesis and evaluate the quantitative importance of this effect, we measured the changes in airway opening pressure (Pao), abdominal pressure (Pab), and rib cage transverse diameter during isolated stimulation of the transversus abdominis muscle in anesthetized dogs, first with the rib cage intact and then after rib cage elastance was increased by clamping the ribs and the sternum. Stimulation produced increases in Pao, Pab, and rib cage diameter in both conditions. With the ribs and sternum clamped, however, the change in Pab was unchanged but the change in Pao was increased by 77% (P < 0.001). In a second experiment, the transversus abdominis was stimulated before and after rib cage elastance was reduced by removing the bony ribs 3-8. Although the change in Pab after removal of the the ribs was still unchanged, the change in Pao was reduced by 62% (P < 0.001). These observations, supported by a model analysis, indicate that rib cage elastance is a major determinant of the mechanical coupling between the abdominal muscles and the lung. In fact, in the dog, the effects of rib cage elastance and Pab on the lung-deflating action of the abdominal muscles are of the same order of magnitude.  相似文献   

18.
In eight anesthetized and tracheotomized rabbits, we studied the transfer impedances of the respiratory system during normocapnic ventilation by high-frequency body-surface oscillation from 3 to 15 Hz. The total respiratory impedance was partitioned into pulmonary and chest wall impedances to characterize the oscillatory mechanical properties of each component. The pulmonary and chest wall resistances were not frequency dependent in the 3- to 15-Hz range. The mean pulmonary resistance was 13.8 +/- 3.2 (SD) cmH2O.l-1.s, although the mean chest wall resistance was 8.6 +/- 2.0 cmH2O.l-1.s. The pulmonary elastance and inertance were 0.247 +/- 0.095 cmH2O/ml and 0.103 +/- 0.033 cmH2O.l-1.s2, respectively. The chest wall elastance and inertance were 0.533 +/- 0.136 cmH2O/ml and 0.041 +/- 0.063 cmH2O.l-1.s2, respectively. With a linear mechanical behavior, the transpulmonary pressure oscillations required to ventilate these tracheotomized animals were at their minimal value at 3 Hz. As the ventilatory frequency was increased beyond 6-9 Hz, both the minute ventilation necessary to maintain normocapnia and the pulmonary impedance increased. These data suggest that ventilation by body-surface oscillation is better suited for relatively moderate frequencies in rabbits with normal lungs.  相似文献   

19.
We measured the effective resistance (Reff) and elastance (Eeff) of the chest wall in four subjects, relaxed at functional residual capacity (FRC), during sinusoidal volume changes (5% vital capacity up to 4 Hz) delivered at the mouth. Subjects sat in a head-out body plethysmograph, and transthoracic pressure was measured with an esophageal balloon. Changes in Reff and in Eeff with frequency were nearly the same in all subjects. Reff (in cmH2O X l-1 X s) was 2.9 +/- 0.8 at 0.2 Hz and fell sharply to minimum values (0.5-0.9) at 1-4 Hz. Eeff (in cmH2O X l-1) increased from approximately 10 at the lowest frequency to a plateau of about 15 at 1-3 Hz and decreased above 3 Hz. In the same subjects, we measured the relative magnitude and phase between the displacements of different parts of the chest wall with magnetometers during identical sinusoidal forcing. Results indicate that the chest wall expands and deflates uniformly at frequencies up to 1 Hz. Thereafter the abdomen makes relatively larger excursions, and the relative magnitude and phase of displacement at different points on the chest wall show complex changes. We conclude that the frequency dependence of Reff and Eeff below 1 Hz is not due to nonuniformities in displacement of different parts of the chest wall. The frequency dependency of Reff is consistent with an increasing contribution of rate-independent plastic dissipation to the pressure difference in phase with flow as breathing frequency decreases.  相似文献   

20.
We measured total chest wall impedance (Zw), "pathway impedances" of the rib cage (Zrcpath), and diaphragm-abdomen (Zd-apath), and impedance of the belly wall including abdominal contents (Zbw+) in five subjects during sustained expiratory (change in average pleural pressure [Ppl] from relaxation = 10 and 20 cmH2O) and inspiratory (change in Ppl = -10 and -20 cmH2O) muscle contraction, using forced oscillatory techniques (0.5-4 Hz) we have previously reported for relaxation (J. Appl. Physiol. 66: 350-359, 1989). Chest wall configuration and mean lung volume were kept constant. Zw, Zrcpath, Zd-apath, and Zbw+ all increased greatly at each frequency during expiratory muscle contraction; increases were proportional to effort. Zw, Zrcpath, and Zd-apath increased greatly during inspiratory muscle contraction, but Zbw+ did not. Resistances and elastances calculated from each of the impedances showed the same changes during muscle contraction as the corresponding impedances. Each of the resistances decreased as frequency increased, independent of effort; elastances generally increased with frequency. These frequency dependencies were similar to those measured in relaxed or tetanized isolated muscle during sinusoidal stretching (P.M. Rack, J. Physiol. Lond. 183: 1-14, 1966). We conclude that during respiratory muscle contraction 1) chest wall impedance increases, 2) changes in regional chest wall impedances can be somewhat independent, depending on which muscles contract, and 3) increases in chest wall impedance are due, at least in part, to changes in the passive properties of the muscles themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号