首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Chlorine dioxide and iodine inactivated poliovirus more efficiently at pH 10.0 than at pH 6.0. Sedimentation analyses of viruses inactivated by chlorine dioxide and iodine at pH 10.9 showed that viral RNA separated from the capsids, resulting in the conversion of virions from 156S structures to 80S particles. The RNAs release from both chlorine dioxide- and iodine-inactivated viruses cosedimented with intact 35S viral RNA. Both chlorine dioxide and iodine reacted with the capsid proteins of poliovirus and changed the pI from pH 7.0 to pH 5.8. However, the mechanisms of inactivation of poliovirus by chlorine dioxide and iodine were found to differ. Iodine inactivated viruses by impairing their ability to adsorb to HeLa cells, whereas chlorine dioxide-inactivated viruses showed a reduced incorporation of [14C]uridine into new viral RNA. We concluded, then, that chlorine dioxide inactivated poliovirus by reacting with the viral RNA and impairing the ability of the viral genome to act as a template for RNA synthesis.  相似文献   

2.
Four poliovirus mutants with modifications of tyrosine 88 in 2A(pro) were generated and introduced into the cloned poliovirus genome. Mutants Y88P and Y88L were nonviable, mutant Y88F showed a wild-type (WT) phenotype, and mutant Y88S showed a delayed cytopathic effect and formed small plaques in HeLa cells. Growth of Y88S in HeLa cells was restricted, giving rise to about 20% of the PFU production of the WT poliovirus. The 2A (Y88S) mutant synthesized significantly lower levels of viral proteins in HeLa cells than did the WT poliovirus, while the kinetics of p220 cleavage were identical for both viruses. Strikingly, the 2A (Y88S) mutant was unable to cleave 3CD, as shown by analysis of poliovirus proteins labeled with [35S]methionine or immunoblotted with a specific anti-3C serum. The ability of the Y88S mutant to form infectious virus and cleave 3CD can be complemented by the WT poliovirus. Synthesis of viral RNA was diminished in the Y88S mutant but less than the inhibition of translation of viral RNA. Experiments in which guanidine was used to inhibit poliovirus RNA synthesis suggest that the primary defect of the Y88S mutant virus is at the level of poliovirus RNA translation, while viral genome replication is much less affected. Transfection of HeLa cells infected with the WT poliovirus with a luciferase mRNA containing the poliovirus 5' untranslated sequence gives rise to a severalfold increase in luciferase activity. This enhanced translation of leader-luc mRNA was not observed when the transfected cells were infected with the 2A (Y88S) mutant. Moreover, cotransfection with mRNA encoding WT poliovirus 2A(pro) enhanced translation of leader-luc mRNA. This enhancement was much lower upon transfection with mRNA encoding 2A(Y88S), 2A(Y88L), or 2A(Y88P). These findings support the view that 2A(pro) itself, rather than the 3C' and/or 3D' products, is necessary for efficient translation of poliovirus RNA in HeLa cells.  相似文献   

3.
The phenotypic defects of two type 1 Mahoney poliovirus mutants, termed VP1-101 and VP1-102, were caused by two different small deletions in the region of the RNA genome encoding the amino terminus of the capsid protein VP1. This portion of VP1 was unresolved in the three-dimensional structure of the poliovirion, buried within the virion, and likely to interact with the viral RNA. Both VP1-101 and VP1-102 showed a diminished ability to enter CV1 but not HeLa cells; both mutants formed plaques on CV1 and HeLa cells that were smaller than wild type. Neither the rate of binding to cells nor the rate of subsequent receptor-dependent conformational change of the mutant poliovirions was affected. However, both mutants displayed delayed kinetics of RNA release compared with wild-type virus. One of the mutants, VP1-102, also displayed a defect in viral morphogenesis: 75S empty capsids formed normally, but 150S particles that contained RNA accumulated much more slowly. We suggest that the VP1-102 mutation affects RNA encapsidation as well as RNA release, whereas the VP1-101 mutation affects only RNA release. Therefore, RNA packaging and RNA release are genetically linked but can be mutated separately in different VP1 alleles, and both processes involve the amino terminus of VP1.  相似文献   

4.
Using a hairpin primer/template RNA derived from sequences present at the 3' end of the poliovirus genome, we investigated the RNA-binding and elongation activities of highly purified poliovirus 3D polymerase. We found that surprisingly high polymerase concentrations were required for efficient template utilization. Binding of template RNAs appeared to be the primary determinant of efficient utilization because binding and elongation activities correlated closely. Using a three-filter binding assay, polymerase binding to RNA was found to be highly cooperative with respect to polymerase concentration. At pH 5.5, where binding was most cooperative, a Hill coefficient of 5 was obtained, indicating that several polymerase molecules interact to retain the 110-nt RNA in a filter-bound complex. Chemical crosslinking with glutaraldehyde demonstrated physical polymerase-polymerase interactions, supporting the cooperative binding data. We propose a model in which poliovirus 3D polymerase functions both as a catalytic polymerase and as a cooperative single-stranded RNA-binding protein during RNA-dependent RNA synthesis.  相似文献   

5.
The polyadenylate [poly(A)] content of the genome RNA of human rhinovirus type 14 (HRV-14) is nearly twice as large as that of the genome RNA of poliovirus type 2. The poly(A) content of viral RNA was determined to be the RNase-resistant fraction of 32P-labeled viral RNA extracted from purified virions. Polyacrylamide gel electrophoresis indicated that the poly(A) sequences of HRV-14 are more heterogenous and on an average larger than those of poliovirus RNA. On the basis of susceptibility to micrococcal polynucleotide phosphorylase the rhinovirus genome terminates in poly(A). Replication of both viruses is almost totally inhibited by cordycepin at 50 mug/ml. At lower concentrations, rhinovirus replication is more sensitive to cordycepin than poliovirus replication. Addition of cordycepin (75 mug/ml) to infected culture prior to or during viral RNA replication results in more or less complete inhibition of virus-specific RNA synthesis. The results do not indicate that cordycepin sensitivity of either virus is due to preferential inhibition of viral poly(A) synthesis by this antibiotic.  相似文献   

6.
Defective interfering (DI) RNA genomes of poliovirus which contain in-frame deletions in the P1 capsid protein-encoding region have been described. DI genomes are capable of replication and can be encapsidated by capsid proteins provided in trans from wild-type poliovirus. In this report, we demonstrate that a previously described poliovirus DI genome (K. Hagino-Yamagishi and A. Nomoto, J. Virol. 63:5386-5392, 1989) can be complemented by a recombinant vaccinia virus, VVP1 (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 65:2088-2092, 1991), which expresses the poliovirus capsid precursor polyprotein, P1. Stocks of defective polioviruses were generated by transfecting in vitro-transcribed defective genome RNA derived from plasmid pSM1(T7)1 into HeLa cells infected with VVP1 and were maintained by serial passage in the presence of VVP1. Encapsidation of the defective poliovirus genome was demonstrated by characterizing poliovirus-specific protein expression in cells infected with preparations of defective poliovirus and by Northern (RNA) blot analysis of poliovirus-specific RNA incorporated into defective poliovirus particles. Cells infected with preparations of defective poliovirus expressed poliovirus protein 3CD but did not express capsid proteins derived from a full-length P1 precursor. Poliovirus-specific RNA encapsidated in viral particles generated in cells coinfected with VVP1 and defective poliovirus migrated slightly faster on formaldehyde-agarose gels than wild-type poliovirus RNA, demonstrating maintenance of the genomic deletion. By metabolic radiolabeling with [35S]methionine-cysteine, the defective poliovirus particles were shown to contain appropriate mature-virion proteins. This is the first report of the generation of a pure population of defective polioviruses free of contaminating wild-type poliovirus. We demonstrate the use of this recombinant vaccinia virus-defective poliovirus genome complementation system for studying the effects of a defined mutation in the P1 capsid precursor on virus assembly. Following removal of residual VVP1 from defective poliovirus preparations, processing and assembly of poliovirus capsid proteins derived from a nonmyristylated P1 precursor expressed by a recombinant vaccinia virus, VVP1 myr- (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 66:4556-4563, 1992), in cells coinfected with defective poliovirus were analyzed. Capsid proteins generated from nonmyristylated P1 did not assemble detectable levels of mature virions but did assemble, at low levels, into empty capsids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Defective interfering particles of poliovirus. II. Nature of the defect   总被引:29,自引:0,他引:29  
Poliovirus defective, interfering particles in which about 15% of the standard viral RNA is deleted have been described (Cole et al., 1971). Stocks of DI3 particles more than 99% free of standard poliovirus were prepared by centrifugation of mixed preparations in CsCl gradients. Using purified DI particles, it was found that DI particles can carry out most of the standard poliovirus functions including inhibition of cellular macromolecular synthesis, production of viral RNA and production of virus-specific protein. Neither the kinetics nor extent of viral RNA or protein synthesis differed between DI particle-infected cells and standard virus-infected cells.Newly made virions, capsid proteins, and the capsid protein precursor (NCVP 1) were totally absent in DI particle-infected cells. All of the other viral proteins were present. DI-infected cells briefly labeled with amino acids also contained a new polypeptide, DI-P, which was apparently the residual fragment of NCVP 1 encoded by the DI genome. It was very unstable, being rapidly degraded to acid-soluble fragments. When the cleavage of viral proteins was inhibited with amino acid analogs, precursors of the viral proteins were generated. Those precursors which should have contained NCVP 1 had molecular weights 30,000 to 40,000 daltons lower in DI-infected cells than in standard virus-infected cells. This is the amount of protein encoded by 15% of the standard poliovirus genome which is the per cent of the standard RNA sequence not represented in DI RNA.Poliovirus DI particles therefore appear to be deletion mutants lacking RNA encoding about one-third of the capsid protein precursor. Whether the deletion is internal or terminal remains to be determined.  相似文献   

8.
RNA-binding proteins of bovine rotavirus.   总被引:23,自引:9,他引:14       下载免费PDF全文
  相似文献   

9.
Upon binding to the poliovirus receptor (PVR), the poliovirus 160S particles undergo a conformational transition to generate 135S particles, which are believed to be intermediates in the virus entry process. The 135S particles interact with host cell membranes through exposure of the N termini of VP1 and the myristylated VP4 protein, and successful cytoplasmic delivery of the genomic RNA requires the interaction of these domains with cellular membranes whose identity is unknown. Because detergent-insoluble microdomains (DIMs) in the plasma membrane have been shown to be important in the entry of other picornaviruses, it was of interest to determine if poliovirus similarly required DIMs during virus entry. We show here that methyl-beta-cyclodextrin (MbetaCD), which disrupts DIMs by depleting cells of cholesterol, inhibits virus infection and that this inhibition was partially reversed by partially restoring cholesterol levels in cells, suggesting that MbetaCD inhibition of virus infection was mediated by removal of cellular cholesterol. However, fractionation of cellular membranes into DIMs and detergent-soluble membrane fractions showed that both PVR and poliovirus capsid proteins localize not to DIMs but to detergent-soluble membrane fractions during entry into the cells, and their localization was unaffected by treatment with MbetaCD. We further demonstrate that treatment with MbetaCD inhibits RNA delivery after formation of the 135S particles. These data indicate that the cholesterol status of the cell is important during the process of genome delivery and that these entry pathways are distinct from those requiring DIM integrity.  相似文献   

10.
In vitro construction of poliovirus defective interfering particles.   总被引:26,自引:21,他引:5       下载免费PDF全文
To construct poliovirus defective interfering (DI) particles in vitro, we synthesized an RNA from a cloned poliovirus cDNA, pSM1(T7)1, which carried a deletion in the genome region corresponding to nucleotide positions 1663 to 2478 encoding viral capsid proteins, by using bacteriophage T7 RNA polymerase. The RNA was designed to retain the correct reading frame in nucleotide sequence downstream of the deletion. HeLa S3 monolayer cells were transfected with the deletion RNA and then superinfected with standard virus as a helper. The DI RNA was observed in the infected cells after three passages at high multiplicity of infection. The sequence analysis of RNA extracted from the purified DI particle clearly showed that this DI RNA had the same deletion in size and location as that in the RNA used for the transfection. Thus, we succeeded in construction of a poliovirus DI particle in vitro. To gain insight into the mechanism for DI generation, we constructed poliovirus cDNAs pSM1(T7)1a and pSM1(T7)1b that, in addition to the same deletion as that in pSM1(T7)1, had insertion sequences of 4 bases and 12 bases, respectively, at the corresponding nucleotide position, 2978. The RNA transcribed from pSM1(T7)1a was not a template for synthesis of poliovirus nonstructural proteins and therefore was inactive as an RNA replicon. On the other hand, the RNA from pSM1(T7)1b replicated properly in the transfected cells. Superinfection of the transfected cells with standard virus resulted in production of DI particles derived from pSM1(T7)1b and not from pSM1(T7)1a. These observations indicate that deletion RNAs that are inactive replicons have little or no possibility of being genomes of DI particles suggesting the existence of a nonstructural protein(s) that has an inclination to function as a cis-acting protein(s). The method described here will provide a useful technique to investigate genetic information essential for poliovirus replication.  相似文献   

11.
Genome replication of poliovirus, as yet unsolved, involves numerous viral polypeptides that arise from proteolysis of the viral polyprotein. One of these proteins is 3AB, an RNA-binding protein with multiple functions, that serves also as the precursor for the genome-linked protein VPg (= 3B). Eight clustered charged amino acid-to-alanine mutants in the 3AB coding region of poliovirus were constructed and analyzed, together with three additional single-amino acid exchange mutants in VPg, for viral phenotypes. All mutants expressed severe inhibition in RNA synthesis, but none were temperature sensitive (ts). The 3AB polypeptides of mutants with a lethal phenotype were overexpressed in Escherichia coli, purified to near homogeneity, and studied with respect to four functions: (1) ribonucleoprotein complex formation with 3CDpro and the 5'-terminal cloverleaf of the poliovirus genome; (2) binding to the genomic and negative-sense RNA; (3) stimulation of 3CDpro cleavage; and (4) stimulation of RNA polymerase activity of 3Dpol. The results have allowed mapping of domains important for RNA binding and the formation of certain protein-protein complexes, and correlation of these processes with essential steps in viral genome replication.  相似文献   

12.
A synthetic nonapeptide corresponding to the N-terminal sequence of poliovirus genome-linked protein (VPg) was linked to bovine serum albumin and used to raise antibodies in rabbits. The antipeptide antibodies specifically precipitated the nonapeptide, native VPg, and VPg-linked poliovirion RNA. The antipeptide antibodies inhibited host factor-stimulated, poliovirus replicase-catalyzed in vitro synthesis of full-length (35S) RNA in response to virion RNA. Oligouridylic acid-stimulated RNA synthesis was not affected by the antipeptide antibodies. Preincubation of the antibodies with excess nonapeptide reversed the antipeptide antibody-mediated inhibition of host factor-stimulated RNA synthesis by the poliovirus replicase. A role for VPg in the in vitro replication of poliovirus RNA genome is discussed.  相似文献   

13.
14.
The ribonucleoprotein particles released from isolated nuclei of regenerating rat liver in two in vitro systems were studied and the following results were obtained. 1. When the isolated nuclei of regenerating rat liver labeled in vivo with [14C] orotic acid were incubated in medium containing ATP and an energy-regenerating system (medium I) release of labeled 40-S particles was observed. Analysis of these 40-S particles showed that they contained heterogeneous RNA but no 18 S or 28 S ribosomal RNAs and their buoyant density in CsCl was 1.42-1.45 g/cm3, suggesting that they were nuclear informosome-like particles released during incubation. 2. When the same nuclei were incubated in the same medium fortified with dialyzed cytosol, spermidine and yeast RNA (medium II), release of labeled 60-S and 40-S particles was observed. Using CsCl buoyant density gradient centrifugation, two components were found in the labeled ribonucleoprotein particles released from nuclei in this medium. The labeled 60-S particles were found to contain 28-S RNA as the main component and their buoyant density in CsCl was 1.61 g/cm3, suggesting that they were labeled large ribosomal subunits. The labeled 40-S particles contained both 18 S RNA and heterogeneous RNA and they formed two discrete bands in CsCl, at 1.40 and 1.56 g/cm3, suggesting that they contained small ribosomal subunits and nuclear informosome-like particles. 3. These results clearly indicate that addition of dialyzed cytosol, spermidine and low molecular yeast RNA to medium I causes the release of ribosomal subunits or their precursors from isolated nuclei in the in vitro system.  相似文献   

15.
Mechanism of poliovirus inactivation by ammonia.   总被引:11,自引:0,他引:11       下载免费PDF全文
Poliovirus inactivation by ammonia causes a slight reduction in the sedimentation coefficients of viral particles, but has no detectable effect on either the electrophoretic pattern of viral capsid proteins or the isoelectric points of inactivated particles. These virions still attach to cells, but are unable to repress host translation or stimulate the synthesis of detectable amounts of viral RNA. Although ammonia has no detectable effect on naked poliovirus RNA, it causes cleavage of this RNA when still within viral particles. Therefore, the RNA genome appears to be the only component of poliovirus significantly affected by ammonia.  相似文献   

16.
The sequence complexity of the 60-70S RNA complex from Moloney murine leukemia virus (M-MuLV) was determined by measuring the annealing rate of radioactively labeled virus-specific DNA with M-MuLV 60-70S RNA in conditions of vast RNA excess. The M-MuLV RNA annealing rate, characterized by the quantity C(r)t((1/2)), was compared with the C(r)t((1/2)) values for annealing of poliovirus 35S RNA (2.6 x 10(6) molecular weight) with poliovirus-specific DNA and Sindbis virus 42S RNA (4.3 x 10(6) molecular weight) with Sindbis-specific DNA. M-MuLV-specific DNA was prepared in vitro by the endogenous DNA polymerase reaction of M-MuLV virions, and poliovirus and Sindbis virus DNAs were prepared by incubation of viral RNA and DNA polymerase purified from avian myeloblastosis virus and an oligo deoxynucleotide primer. The poliovirus and Sindbis virus DNAs were sedimented through alkaline sucrose gradients, and those portions of the DNA with sizes similar to the M-MuLV DNA were selected out for the annealing measurements. M-MuLV was cloned on NIH-3T3 cells because it appeared possible that the standard source of M-MuLV for these experiments was a mixture of viruses. The annealing measurements indicated a sequence complexity of approximately 9 x 10(6) daltons for the cloned M-MuLV 60-70S RNA when standardized to poliovirus and Sindbis virus RNAs. This value supports the hypothesis that each of the 35S RNA subunits of M-MuLV 60-70S RNA has a different base sequence.  相似文献   

17.
Virus particles banding at 1.34 g/ml in CsCl and sedimenting at 160S in sucrose gradients were isolated from fecal specimens of patients suffering from hepatitis. In the presence of 4 M urea and about 90% formamide, these particles released linear nucleic acid molecules of the kinked appearance characteristic of single-stranded RNA or single-stranded DNA. They could be distinguished from the nucleic acid of phage lambda added to the preparation as a marker for double-stranded configuration. Experiments in which the virus particles under investigation were incubated at pH 12.9 at 50 degrees C for 30 min revealed that their nucleic acid molecules were hydrolyzed as readily as the RNA genome of poliovirus type 2 analyzed in parallel. Both the single-stranded DNA of phage phiX174 and that of parvovirus LuIII, however, proved unaffected by this treatment, and the double-stranded DNA of phage lambda was denatured to single-stranded molecules. It was concluded, therefore, that the virus of human hepatitis A contains a linear genome of single-stranded RNA and has to be classified with the picornaviruses.  相似文献   

18.
U. Lönn 《Cell》1978,13(4):727-733
With a nonaqeous microdissection technique, the cytoplasm of Chironomus salivary gland cells can be separated into concentric zones situated at increasing distances from the nuclear envelope. This dissection technique is used here to investigate the cytoplasmic distribution of 75S RNA of Balbiani ring origin. The Balbiani ring 75S RNA has properties of a messenger RNA coding for secretory proteins. After a pulse of RNA precursor to the living animal, labeled Balbiani ring 75S RNA is found mainly in the cytoplasm located closer to the nuclear envelope, with smaller amounts toward the periphery of the cell. This gradient, initially very steep, lasts for a least 2 days, but less than 6 days. Experiments with 5-fluorouridine indicate that the formation of the gradient does not depend upon simultaneous export of ribosomal subunits. After a pretreatment of the animals with the protein synthesis inhibitor cycloheximide, however, newly synthesized 75S RNA distributes evenly in the cytoplasm-that is, this treatment prevents the formation of the 75S RNA gradient. The gradient in salivary glands of normally cultured animals is therefore likely to be the result of diffusion restriction of the labeled 75S RNA. Thus the 75S RNA located closer to the nuclear envelope is the most recently exported 75S RNA. An explanation of these results is the the 75S RNA associates with the membranes of the endoplasmic reticulum early or immediately after nuclear release. This association should occur in the cytoplasm surrounding the nucleus and may occur either as single particles and/or as parts of polysomes.  相似文献   

19.
The mechanism by which poliovirus infects the cell has been characterized by a combination of biochemical and structural studies, leading to a working model for cell entry. Upon receptor binding at physiological temperature, native virus (160S) undergoes a conformational change to a 135S particle from which VP4 and the N terminus of VP1 are externalized. These components interact with the membrane and are proposed to form a membrane pore. An additional conformational change in the particle is accompanied by release of the infectious viral RNA genome from the particle and its delivery, presumably through the membrane pore into the cytoplasm, leaving behind an empty 80S particle. In this report, we describe the generation of a receptor-decorated liposome system, comprising nickel-chelating nitrilotriacetic acid (NTA) liposomes and His-tagged poliovirus receptor, and its use in characterizing the early events in poliovirus infection. Receptor-decorated liposomes were able to capture virus and induce a temperature-dependent virus conversion to the 135S particle. Upon conversion, 135S particles became tethered to the liposome independently of receptor by a membrane interaction with the N terminus of VP1. Converted particles had lost VP4, which partitioned with the membrane. The development of a simple model membrane system provides a novel tool for studying poliovirus entry. The liposome system bridges the gap between previous studies using either soluble receptor or whole cells and offers a flexible template which can be extrapolated to electron microscopy experiments that analyze the structural biology of nonenveloped virus entry.  相似文献   

20.
Highly purified 14S subunit particles were obtained from alkali-dissociated poliovirus type 1 procapsids (naturally occurring empty capsids in poliovirus-infected cells) to compare their morphological and biophysical properties with those of naturally occurring 14S particles. Procapsid-derived 14S particles (PC-14S), like naturally occurring 14S particles, were capable of self-assembly into an empty shell in buffer or extracts from uninfected cells. These empty capsids always exhibited pIs more acidic than those of procapsids but were themselves distinguishable by their respective pIs. Nevertheless, if PC-14S or naturally occurring 14S particles were incubated with extracts made from poliovirus-infected cells, procapsidlike empty shells were formed. This clearly showed that the 14S particle, however obtained, possesses the information to form an empty shell of correct dimensions but of improper conformation, unless a factor present in poliovirus-infected cells is present. With the electron microscope, the PC-14S subunit frequently was seen as a pentagonal structure with a diameter of 20.4 +/- 1.4 nm, a size somewhat larger than expected for a subunit composing 1/12th of the poliovirus surface. Upon self-assembly in vitro, the empty shell formed exhibited a diameter of 29 +/- 1 nm and a wall thickness of ca. 6 to 7 nm. It was necessary to avoid CsCl banding of procapsids in their preparation as this treatment altered both their pI and their sensitivity to alkali dissociation into 14S subunits. The relevance of these findings to the nature and role of procapsids and the requirement for a morphopoietic factor in poliovirus morphogenesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号