首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
分子标记在植物学中的应用及前景   总被引:35,自引:1,他引:34  
1 引言随着近年来分子生物学的发展,遗传标记的种类已越来越多,不只局限于传统的形态标记,分子标记尤其显示出独特的优越性,并被广泛地应用于植物学研究的各个领域。那么什么叫标记呢?King和Stansfield〔1〕将其定义为代表一个位于染色体上已知位点的基因或一种清晰的表型性状。总的来说,分子标记目前主要应用于两方面:一是作为基因,尤其是一些重要农艺性状基因如抗虫、抗病基因或数量性状基因的检测尺度,要做到这点,首先必须确定与目的基因紧密连锁的分子标记;二是作为种群分析、种质资源分析及遗传育种的研究依据。2 分子标记的种类及…  相似文献   

2.
小麦近缘种簇毛麦携带许多尚未克隆的抗病(R)基因。NBS-LRR类型的R基因占已克隆植物R基因的绝大多数,因此,本研究根据NBS-LRR类型R基因的保守序列设计引物,从簇毛麦基因组DNA和cDNA中扩增获得23条相关序列。基于其中5条抗病基因同源序列(RGAs)H-56/d6、H-66/b2和CDS40设计引物,对小麦、簇毛麦、硬-簇双二倍体及其杂种以及已知携带个别簇毛麦染色体或染色体臂的小麦材料进一步进行PCR扩增,结果表明:3对引物均可对簇毛麦、硬-簇双二倍体进行特异扩增;同时,源于序列H-66/b2的引物可对1VL和6VL染色体臂进行特异扩增;源于序列CDS40的引物可在同时携带1VL和2VS或同时携带2VS和4V的小麦材料以及具有6VL的小麦材料中特异扩增,而H-56/d6的引物在携带1VL、2VS、4V和6V染色体臂或染色体的小麦背景中都不能获得目的片段的扩增。这些结果不仅为外源染色体臂在小麦背景中的追踪与鉴定提供了新的分子标记,而且这些标记还与外源染色体或染色体臂上的抗病基因或抗病基因同源物紧密连锁或共分离。  相似文献   

3.
水稻中大麦Mlo和玉米Hm1抗病基因同源序列的分析和定位   总被引:4,自引:0,他引:4  
刘卫东  王石平 《遗传学报》2002,29(10):875-879
大麦抗病基因Mlo和玉米抗病基因Hm1编码的产物不具有绝大多数植物抗病基因产物所含有的保守结构域。这两个抗病基因的作用机理也不符合基因对基因学说。从水稻中分离克隆了Mlo基因的同源序列OsMlo-1和玉米Hm1基因的同源序列DFR-1。利用水稻分子标记遗传连锁图,将OsMlo-1定位于水稻第六染色体的两俱RZ667和RG424之间;Osmlo-1距离这两个分子标记分别为20.6和6.0cM(centi-Morgan)。将DFR-1定位于水稻第一染色体两个分子标记R2635和RG462之间;DFR-1距离这两个分子标记分别为11.3和23.9cM。参照已发表的水稻分子标记连锁图,发现OsMlo-1和DFR-1的染色体位点分别与两个报道的水稻抗稻瘟病数量性状位点(QTL)有较好的对应关系。结果提示,水稻中与大麦Mlo 和玉米Hml同源的基因可能也参于抗病反应的调控。  相似文献   

4.
水稻优良性状控制基因的定位进展及其在染色体上的分布   总被引:3,自引:0,他引:3  
陈瑞  程在全  黄兴奇  张伟 《遗传》2007,29(4):399-412
利用分子标记可以寻找并且定位目的基因, 分子标记辅助育种技术则能够快速、高效地筛选出携带目的基因的优良品种。文章总结了近年来水稻中已被定位的优良性状控制基因及与其连锁的分子标记, 其中包括抗病虫害、抗寒、抗旱、不育、育性恢复等194个基因, 这些基因中已有14个被克隆测序。在此基础上探讨了这些基因在染色体上的分布趋势。  相似文献   

5.
为了挖掘野生稻中的抗病资源,根据已克隆的植物抗病基因核苷酸结合位点序列中的保守结构域设计3对简并引物,从疣粒、药用、高秆、宽叶和斑点野生稻基因组DNA中分离出13条NBS类抗病基因类似物,其中11条具有连续的ORF,具有NBS类R基因的保守基元P-loop、kinas-2、kinas-3a和GLPL。在NCBI上进行同源性搜索发现,其中12条RGAs的核苷酸序列与水稻已知的NBS类R基因具有66%~94%的同源性,与其他植物已知R基因具有67%~84%的同源性;其对应的氨基酸序列与水稻已知的NBS类R基因具有43%~93%的同源性,与其他植物已知R基因具有37%~79%的同源性。另外1条的核苷酸序列与水稻假定的NBS类R基因具有76%的同源性,其氨基酸序列与水稻假定的NBS类R基因具有74%的同源性。根据序列分析结果设计6对不同基因特异性引物,并利用RT-PCR技术进行表达分析,结果表明,RN1BD5、RN1BD10、RN1GG2和RN1YY6均能表达,说明这些片段可能是功能性抗病基因的部分序列;而RN1KY9和RN1GG5没有表达,可能是假基因。  相似文献   

6.
PCR-RAPD分子生物学技术及其在植物抗病性研究中的应用   总被引:4,自引:0,他引:4  
PCR—RAPD技术是一种高效的基因组DNA多态性分析技术,能够在对生物细胞或组织中DNA遗传多样性、亲缘关系及系统进化分子标记检测的同时进行基因定位与遗传作图。本综述了PCR—RAPD技术的基本原理和应用范围,以及近年来在植物抗感病品种(品系)间亲缘远近关系分析、植物抗病性遗传基因的DNA分子标记与检测、植物抗病基因的标记和定位、植物抗病基因的分离与克隆、植物抗病育种的分子标记辅助选择与检测等植物抗病性分子机制研究方面的应用,并对该技术所存在的问题及应用前景进行了探讨。  相似文献   

7.
稻瘟病抗病基因Pi15曾被作者鉴定为与已知抗病基因Pii具有连锁关系,但是,Pii基因究竟位于染色体6还是9上存在争议.为了确定Pi15基因的染色体位置,利用分子标记在由15个抗病个体和141个感病个体组成的F2群体中,通过混合群体分离法(BSA)与隐性群体分析法(RCA)相结合的手段,对目标基因进行了连锁分析.首先,从染色体6和9分别选择10个微卫星标记进行了分析,结果表明,只有位于染色体9的RM316与目标基因连锁,重组率为(19.1±3.7)%.为了进一步确定这种连锁关系,从染色体9选择了4个序列标定位点(STS)标记进行分析,结果表明,只有G103与目标基因连锁,重组率为(5.7±2.1)%.为了获得与目标基因更加紧密连锁的分子标记,对目标基因进行了RAPD)分析.在筛选、分析了1 000个随机引物之后,从中获得了3个目标基因紧密连锁的分子标记BAPi15486、BAPi15782、BAPi15844.它们与目标基因的重组率分别为0.35%、0.35%和1.1%.这些紧密连锁的分子标记可作为分子标记辅助基因聚合和克隆的出发点.  相似文献   

8.
核苷酸结合位点-富含亮氨酸重复(NBS-LRR)类的抗病基因是植物抗病基因中最大的一类,也是近年来植物抗病分子育种研究的一大热点。NBS profiling是一种新型的寻找NBS-LRR类R基因和R基因同源序列(RGA)的分子标记。本文介绍这一分子标记技术的基本原理、方法步骤、优点及其在寻找植物抗性基因中的作用。  相似文献   

9.
植物数量性状变异的分子基础与QTL克隆研究进展   总被引:2,自引:2,他引:0  
探讨数量性状变异规律以便对其进行遗传操纵一直是植物遗传学的一个重要领域。DNA分子标记和QTL作图技术的发展以及拟南芥和水稻全基因组测序的完成极大地促进了植物数量性状分子基础的研究。现已克隆了拟南芥ED1、水稻Hdl、玉米Tb1、番茄fw2.2和Brii9-2-5等控制目标数量性状的基因。数量性状表型变异不仅源于多个数量性状基因(QTL)的分离.而且还受到内外环境的修饰。QTL等位基因变异与孟德尔基因变异具有类似的分子基础,即基因表达或蛋白质功能发生改变。通过分析已克隆的植物QTL的变异特征及分子基础,讨论了植物QTL克隆技术策略,并对QTL研究所面临的挑战和应用前景进行了展望。  相似文献   

10.
单核苷酸多态性与甜瓜抗枯萎病分子育种研究   总被引:1,自引:0,他引:1  
目的:结合单核苷酸多态性标记技术,利用甜瓜本身的抗病性以解决新疆甜瓜病害问题。方法:对新疆甜瓜抗枯萎病基因Fom-2基因进行克隆分析,并根据Fom-2基因在不同抗性甜瓜亲本的单核苷酸多态性,设计检测SNP标记的PCR扩增引物,验证其多态性;并利用F2代分析该标记与筛选获得的甜瓜抗枯萎病基因连锁的SSR标记的遗传关系。结果:在抗病与感病甜瓜品种中均扩增获得PCR条带,试验中设计单核苷酸多态性分子标记在抗病品种为显性,与筛选的和抗枯萎病基因紧密连锁的共显性标记SSR430共分离。结论:不同抗性甜瓜品种均含有Fom-2基因或其高度同源序列,SNP显性标记和共显性标记SSR430均可用于甜瓜抗枯萎病分子标记辅助育种。  相似文献   

11.
A population of 131 recombinant inbred lines from a wide cross between chickpea ( Cicer arietinum L., resistant parent) and Cicer reticulatum (susceptible parent) segregating for the closely linked resistances against Fusarium oxysporum f.sp. ciceri races 4 and 5 was used to develop DNA amplification fingerprinting markers linked to both resistance loci. Bulked segregant analysis revealed 19 new markers on linkage group 2 of the genetic map on which the resistance genes are located. Closest linkage (2.0 cM) was observed between marker R-2609-1 and the race 4 resistance locus. Seven other markers flanked this locus in a range from 4.1 to 9.0 cM. These are the most closely linked markers available for this locus up to date. The sequences of the linked markers were highly similar to genes encoding proteins involved in plant pathogen response, such as a PR-5 thaumatin-like protein and an important regulator of the phytoalexin pathway, anthranilate N-hydroxycinnamoyl-benzoyltransferase. Others showed significant alignments to genes encoding housekeeping enzymes such as the MutS2 DNA-mismatch repair protein. In the Arabidopsis genome, similar genes are located on short segments of chromosome 1 and 5, respectively, suggesting synteny between the fusarium resistance gene cluster of chickpea and the corresponding regions in the Arabidopsis genome. Three marker sequences were similar to retrotransposon-derived and/or satellite DNA sequences. The markers developed here provide a starting point for physical mapping and map-based cloning of the fusarium resistance genes and exploration of synteny in this highly interesting region of the chickpea genome.  相似文献   

12.
Soybean phytophthora resistance gene Rps8 maps closely to the Rps3 region   总被引:9,自引:0,他引:9  
Root and stem rot is one of the major diseases of soybean. It is caused by the oomycete pathogen Phytophthora sojae. A series of resistance genes (Rps) have been providing soybean with reasonable protection against this pathogen. Among these genes, Rps8, which confers resistance to most P. sojae isolates, recently has been mapped. However, the most closely linked molecular marker was mapped at about 10 cM from Rps8. In this investigation, we attempted to develop a high-density genetic map of the Rps8 region and identify closely linked SSR markers for marker-assisted selection of this invaluable gene. Bulk segregant analysis was conducted for the identification of SSR markers that are tightly linked to Rps8. Polymorphic SSR markers selected from the Rps8 region failed to show cosegregation with Phytophthora resistance. Subsequently, bulk segregant analysis of the whole soybean genome and mapping experiments revealed that the Rps8 gene maps closely to the disease resistance gene-rich Rps3 region.  相似文献   

13.
Three genetically independent avirulence genes, AVR1-Irat7, AVRI-MedNoi; and AVR1-Ku86, were identified in a cross involving isolates Guy11 and 2/0/3 of the rice blast fungus, Magnaporthe grisea. Using 76 random progeny, we constructed a partial genetic map with restriction fragment length polymorphism (RFLP) markers revealed by probes such as the repeated sequences MGL/MGR583 and Pot3/MGR586, cosmids from the M. grisea genetic map, and a telomere sequence oligonucleotide. Avirulence genes AVR1-MedNoi and AVR1-Ku86 were closely linked to telomere RFLPs such as marker TelG (6 cM from AVR1-MedNoi) and TelF (4.5 cM from AVR1-Ku86). Avirulence gene AVR1-Irat7 was linked to a cosmid RFLP located on chromosome 1 and mapped at 20 cM from the avirulence gene AVR1-CO39. Using bulked segregant analysis, we identified 11 random amplified polymorphic DNA (RAPD) markers closely linked (0 to 10 cM) to the avirulence genes segregating in this cross. Most of these RAPD markers corresponded to junction fragments between known or new transposons and a single-copy sequence. Such junctions or the whole sequences of single-copy RAPD markers were frequently absent in one parental isolate. Single-copy sequences from RAPD markers tightly linked to avirulence genes will be used for positional cloning.  相似文献   

14.
The major histocompatibility complex (MHC) class II molecule consists of noncovalently associated alpha and beta chains. In mammals studied so far, the class II MHC can be divided into a number of regions, each containing one or more alpha-chain genes (A genes) and beta-chain genes (B genes), and it has been known for some time that orthologous relationships exist between genes in corresponding regions from different mammalian species. A phylogenetic analysis of DNA sequences of class II A and B genes confirmed these relationships; but no such orthologous relationship was observed between the B genes of mammals and those of birds. Thus, the class II regions have diverged since the separation of birds and mammals (approximately 300 Mya) but before the radiation of the placental mammalian orders (60-80 Mya). Comparison of the phylogenetic trees for A and B genes revealed an unexpected characteristic of DP-region genes: DPB genes are most closely related to DQB genes, whereas DPA chain genes are most closely related to DRA-chain genes. Thus, the DP region seems to have originated through a recombinational event which brought together a DQB gene and a DRA gene (perhaps approximately 120 Mya). The 5' untranslated region of all class II genes includes sequences which are believed to be important in regulating class II gene expression but which are not conserved in known pseudogenes. These sequences are conserved to an extraordinary degree in the human DQB1 gene and its mouse homologue A beta 1, suggesting that regulation of expression of this locus may play a key role in expression of the entire class II MHC.  相似文献   

15.
Leaf rust, caused by Puccinia triticina Eriks., is an important foliar disease of common wheat (Triticum aestivum L.) worldwide. Pyramiding several major rust-resistance genes into one adapted cultivar is one strategy for obtaining more durable resistance. Molecular markers linked to these genes are essential tools for gene pyramiding. The rust-resistance gene Lr41 from T. tauschii has been introgressed into chromosome 2D of several wheat cultivars that are currently under commercial production. To discover molecular markers closely linked to Lr41, a set of near-isogenic lines (NILs) of the hard winter wheat cultivar Century were developed through backcrossing. A population of 95 BC3F2:6 NILs were evaluated for leaf rust resistance at both seedling and adult plant stages and analyzed with simple sequence repeat (SSR) markers using bulked segregant analysis. Four markers closely linked to Lr41 were identified on chromosome 2DS; the closest marker, Xbarc124, was about 1 cM from Lr41. Physical mapping using Chinese Spring nullitetrasomic and ditelosomic genetic stocks confirmed that markers linked to Lr41 were on chromosome arm 2DS. Marker analysis in a diverse set of wheat germplasm indicated that primers BARC124, GWM210, and GDM35 amplified polymorphic bands between most resistant and susceptible accessions and can be used for marker-assisted selection in breeding programs.  相似文献   

16.
Closely linked restriction fragment length polymorphisms (RFLPs) are potentially useful as diagnostic markers of genetic defects, and, in principle, RFLPs can be employed to construct a complete linkage map of the human genome. On the X chromosome, linkage studies are particularly rewarding because in man more than 120 X-linked genes are known. Thus, it is probable that each X-specific RFLP will be of use as a genetic marker of one or several X-linked disorders. To facilitate the search for closely linked RFLPs, we have regionally assigned 16 cloned DNA sequences to various portions of the human X chromosome, employing a large panel of somatic cell hybrids. These probes have been used to correlate genetic and physical distances on Xp, and it can be extrapolated from these data that the number and distribution of available Xq sequences will also suffice to span the long arm of the X chromosome.  相似文献   

17.
Gene pyramiding is a breeding method used to combine multiple useful genes. Although several genes have been pyramided in certain crops, gene pyramiding has not previously been applied to forest trees. In this study, we used the markers closely linked to the two male-sterile genes MS1 and MS2 for the effective development of individuals doubly heterozygous for these two genes. This is the first example of gene pyramiding through marker-assisted selection (MAS) in forest trees. The markers gSNP06239, which is closely linked to the MS1 gene, and estSNP00695, which is closely linked to MS2, were used in MAS. On the basis of the linkage phase between the markers and male-sterile loci, we selected five F1 individuals (S3-64 from Shindai-3 × Kamikiri-31, S3-70 from Shindai-3 × Kamikiri-38, S3-77 from Shindai-3 × Kamikiri-47, S1-22 from Shindai-1 × Nakakubiki-4, and S1-56 from Shindai-1 × Setsugai-20) as parents for artificial crossing. The 268 seedlings obtained from six artificial cross combinations were used in this study. Chi-squared tests showed no significant deviation from the expected Mendelian ratios of genotypes, indicating that MAS using markers closely linked to the male-sterile genes worked very well. Fifteen individuals that showed unexpected genotypes were probably recombinants, because the map distances between the male-sterile locus and the DNA markers were 4.1 cM (gSNP06239 to MS1) and 6.9 cM (estSNP00695 to MS2). Development of markers more closely linked to the male-sterile loci will facilitate precise gene pyramiding in the future.  相似文献   

18.
Tagging genes for blast resistance in rice via linkage to RFLP markers   总被引:24,自引:0,他引:24  
Summary Both Pi-2(t) and Pi-4(t) genes of rice confer complete resistance to the blast fungal pathogen Pyricularia oryzae Cav. As economically important plant genes, they have been recently characterized phenotypically, yet nothing is known about their classical linkage associations and gene products. We report here the isolation of DNA markers closely linked to these blast resistance genes in rice. The DNA markers were identified by testing 142 mapped rice genomic clones as hybridization probes against Southern blots, consisting of DNA from pairs of nearly isogenic lines (NILs) with or without the target genes. Chromosomal segments introgressed from donor genomes were distinguished by restriction fragment length polymorphisms (RFLPs) between the NILs. Linkage associations of the clones with Pi-2(t) and Pi4(t) were verified using F3 segregating populations of known blast reaction. Cosegregation of the resistant genotype and donor-derived allele indicated the presence of linkage between the DNA marker and a blast resistance gene. RFLP analysis showed that Pi-2(t) is closely linked to a single-copy DNA clone RG64 on chromosome 6, with a distance of 2.8+1.4(SE) cMorgans. Another blast resistance gene, Pi-4(t), is 15.3+4.2(SE) cMorgans away from a DNA clone RG869 on chromosome 12. These chromosomal regions can now be examined with additional markers to define the precise locations of Pi-2(t) and Pi-4(t). Tightly linked DNA markers may facilitate early selection for blast resistance genes in breeding programs. These markers may also be useful to map new genes for resistance to blast isolates. They may ultimately lead to the cloning of those genes via chromosome walking. The gene tagging approach demonstrated in this paper may apply to other genes of interest for both monogenic and polygenic traits.  相似文献   

19.
Metagenome survey of biofilms in drinking-water networks   总被引:14,自引:0,他引:14  
Most naturally occurring biofilms contain a vast majority of microorganisms which have not yet been cultured, and therefore we have little information on the genetic information content of these communities. Therefore, we initiated work to characterize the complex metagenome of model drinking water biofilms grown on rubber-coated valves by employing three different strategies. First, a sequence analysis of 650 16S rRNA clones indicated a high diversity within the biofilm communities, with the majority of the microbes being closely related to the Proteobacteria: Only a small fraction of the 16S rRNA sequences were highly similar to rRNA sequences from Actinobacteria, low-G+C gram-positives and the Cytophaga-Flavobacterium-Bacteroides group. Our second strategy included a snapshot genome sequencing approach. Homology searches in public databases with 5,000 random sequence clones from a small insert library resulted in the identification of 2,200 putative protein-coding sequences, of which 1,026 could be classified into functional groups. Similarity analyses indicated that significant fractions of the genes and proteins identified were highly similar to known proteins observed in the genera Rhizobium, Pseudomonas, and Escherichia: Finally, we report 144 kb of DNA sequence information from four selected cosmid clones, of which two formed a 75-kb overlapping contig. The majority of the proteins identified by whole-cosmid sequencing probably originated from microbes closely related to the alpha-, beta-, and gamma-Proteobacteria: The sequence information was used to set up a database containing the phylogenetic and genomic information on this model microbial community. Concerning the potential health risk of the microbial community studied, no DNA or protein sequences directly linked to pathogenic traits were identified.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号