首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungi from the food-borne basidiomycetous genus Wallemia, which comprises Wallemia ichthyophaga, Wallemia muriae and Wallemia sebi, are among the most xerophilic organisms described. Their morphological adaptations to life at high NaCl concentrations are reflected in increased cell-wall thickness and size of cellular aggregates. The objectives of this study were to examine their growth and to define cell morphology and any ultrastructural cell-wall changes when these fungi are grown in low and high glucose and honey concentrations, as environmental osmolytes. We analysed their growth parameters and morphological characteristics by light microscopy and transmission and scanning electron microscopy.Wallemia ichthyophaga grew slowly in all of the sugar-based media, while W. muriae and W. sebi demonstrated better growth. Wallemia ichthyophaga adapted to the high glucose and honey concentrations with formation of larger cellular aggregates, while cell-wall thickness was increased only at the high glucose concentration. Wallemia muriae and W. sebi demonstrated particularly smaller sizes of hyphal aggregates at the high glucose concentration, and different and less explicit changes in cell-wall thickness. Adaptive responses show that the phylogenetically more distant W. ichthyophaga is better adapted to high salt conditions, whereas W. muriae and W. sebi cope better with a high sugar environment.  相似文献   

2.
Osmotic adjustment in the filamentous fungus Aspergillus nidulans.   总被引:5,自引:0,他引:5       下载免费PDF全文
Aspergillus nidulans was shown to be xerotolerant, with optimal radial growth on basal medium amended with 0.5 M NaCl (osmotic potential [psi s] of medium, -3 MPa), 50% optimal growth on medium amended with 1.6 M NaCl (psi s of medium, -8.7 MPa), and little growth on medium amended with 3.4 M NaCl (psi s of medium, -21 MPa). The intracellular content of soluble carbohydrates and of selected cations was measured after growth on basal medium, on this medium osmotically amended with NaCl, KCl, glucose, or glycerol, and also after hyperosmotic and hypoosmotic transfer. The results implicate glycerol and erythritol as the major osmoregulatory solutes. They both accumulated during growth on osmotically amended media, as well as after hyperosmotic transfer, except on glycerol-amended media, in which erythritol did not accumulate. Furthermore, they both decreased in amount after hypoosmotic transfer. With the exception of glycerol, the extracellular osmotic solute did not accumulate intracellularly when mycelium was grown in osmotically amended media, but it accumulated after hyperosmotic transfer. It was concluded that the extracellular solute usually plays only a transient role in osmotic adaptation. The intracellular content of soluble carbohydrates and cations measured could reasonably account for the intracellular osmotic potential of mycelium growing on osmotically amended media.  相似文献   

3.
The influence of the carbon source on alpha-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol and acetate. A. oryzae did not grow on galactose as the sole carbon source, but galactose was co-metabolized together with glucose. Relative to that on low glucose concentration (below 10 mg/l), productivity was found to be higher during growth on maltose and maltodextrins, whereas it was lower during growth on sucrose, fructose, glycerol, mannitol and acetate. During growth on acetate there was no production of alpha-amylase, whereas addition of small amounts of glucose resulted in alpha-amylase production. A possible induction by alpha-methyl-D-glucoside during growth on glucose was also investigated, but this compound was not found to be a better inducer of a-amylase production than glucose. The results strongly indicate that besides acting as a repressor via the CreA protein, glucose acts as an inducer.  相似文献   

4.
AIM: To evaluate the effect of modifications of water activity (aw 0. 996-0.92) of a molasses medium with different solutes (glycerol, glucose, NaCl, proline or sorbitol) on growth, intracellular water potentials (psi(c)) and endogenous accumulation of polyols/sugars in the biocontrol yeast Candida sake. METHODS AND RESULTS: Modification of solute stress significantly influenced growth, psi(c) and accumulation of sugars (glucose/trehalose) and polyols (glycerol, erythritol, arabitol and mannitol) in the yeast cells. Regardless of the solute used to modify aw, growth was always decreased as water stress increased. Candida sake cells grew better in glycerol- and proline-amended media, but were sensitive to NaCl. The psi(c) measured using psychrometry showed a significant effect of solutes, aw and time. Cells from the 0.96 aw NaCl treatment presented the lowest psic value (- 5.20 MPa) while cells from unmodified media (aw = 0. 996) had the highest value (- 0.30 MPa). In unmodified medium, glycerol was the predominant reserve accumulated. Glycerol and arabitol were the major compounds accumulated in media modified with glucose or NaCl. In proline media, the concentration of arabitol increased. In glycerol- and sorbitol-amended media, the concentration of glycerol rose. Some correlations were obtained between compatible solutes and psi(c). CONCLUSIONS AND SIGNIFICANCE: This study demonstrates that subtle changes in physiological parameters significantly affect the endogenous contents of C. sake cells. It may be possible to utilize such physiological information to develop biocontrol inocula with improved quality.  相似文献   

5.
Both house dust and house dust mitesDermatophagoides pteronyssinus contained a wider range of fungi than laboratory mite cultures. In total, nine species of fungi were isolated fromD. pteronyssinus in house dust, and these included three xerophilic species (Eurotium amstelodami, Aspergillus penicillioides andWallemia sebi) commonly found in laboratory cultures ofD. pteronyssinus. It is concluded that mites do interact with a similar range of fungi in natural dust and in laboratory culture, but that the diversity of fungal species in the laboratory is reduced and the density of individual fungal species in culture exceeds that of house dust. In a second experiment, dust samples were incubated at room temperature with 75% relative humidity. The diversity of fungi invariably declined from up to 13 genera to the few species recorded in laboratory culture. This suggests that the dominance of xerophilic fungi in laboratory mite rearings is mediated primarily by low relative humidity, and the exclusion of air-borne spores.  相似文献   

6.
Wallemia ichthyophaga is a fungus from the ancient basidiomycetous genus Wallemia (Wallemiales, Wallemiomycetes) that grows only at salinities between 10% (wt/vol) NaCl and saturated NaCl solution. This obligate halophily is unique among fungi. The main goal of this study was to determine the optimal salinity range for growth of the halophilic W. ichthyophaga and to unravel its osmoadaptation strategy. Our results showed that growth on solid growth media was extremely slow and resulted in small colonies. On the other hand, in the liquid batch cultures, the specific growth rates of W. ichthyophaga were higher, and the biomass production increased with increasing salinities. The optimum salinity range for growth of W. ichthyophaga was between 15 and 20% (wt/vol) NaCl. At 10% NaCl, the biomass production and the growth rate were by far the lowest among all tested salinities. Furthermore, the cell wall content in the dry biomass was extremely high at salinities above 10%. Our results also showed that glycerol was the major osmotically regulated solute, since its accumulation increased with salinity and was diminished by hypo-osmotic shock. Besides glycerol, smaller amounts of arabitol and trace amounts of mannitol were also detected. In addition, W. ichthyophaga maintained relatively small intracellular amounts of potassium and sodium at constant salinities, but during hyperosmotic shock, the amounts of both cations increased significantly. Given our results and the recent availability of the genome sequence, W. ichthyophaga should become well established as a novel model organism for studies of halophily in eukaryotes.  相似文献   

7.
The effect on growth of reducing the water activity (a w) of a medium with various solutes has been investigated for 27 strains of fission yeasts (Schizosaccharomyces). The minimum-tolerated a w (MTA) was dependent on both the nature of the solute and the species. When the strains of each species were grouped together, the lowest mean MTA values were found with glucose, fructose or glycerol as stressing solutes, being in the range 0.89–0.90 for S. pombe, S. malidevorans, S. octosporus and S. slooffiae, but in the range 0.92–0.94 for S. japonicus. With the non-metabolizable sugars sorbose and xylose and the salts NH4Cl, KCl, and NaCl, the mean MTA values were in the range 0.96–0.985, except for (1) the single strain of S. slooffiae, which was more tolerant of NH4Cl and KCl with values of 0.95 and 0.94, respectively, and (2) the strains of S. pombe, S. malidevorans and S. japonicus, which were less tolerant of NaCl with mean values of about 0.99. One strain of each species was examined for intracellular solutes when actively growing in the presence of near-limiting concentrations of stressing solute. With glucose, fructose or glycerol, all five strains contained substantial amounts of glycerol but no other polyol; with the other solutes no glycerol or other polyol was found, except for small amounts of glycerol in strains of S. octosporus and S. slooffiae stressed with NH4Cl, KCl, or NaCl.Abbreviations MTA Minimum-tolerated water activity - a w water activity - YEPG yeast extract, phosphate, glucose medium  相似文献   

8.
The mycoflora of indoor non-industrial environments is reported from “case” studies in The Netherlands. Both air sampling by a RCS-Reutcr centrifugal air sampler and surface sampling by swabs and cellotape preparations were carried out in homes, archives and libraries, musea, offices and schools. Common species encountered in these indoor environments are Aspergillus versicolor, Penicillium brevicompactum, P. chrysogenum, Cladosporium spp. and the xerophilic fungi Eurotium spp. and Wallemia sebi. Aspergillus fumigatus, Scopulariopsis spp. and Stachybotrys chartarum were occasionally isolated. It is not always possible to detect the mycoflora growing on surfaces by air sampling. Therefore direct microscopical examination and sampling from surfaces in addition to air sampling is strongly recommended for the detection of viable moulds in indoor environments. Selection of the most suitable media for isolation of fungi is discussed.  相似文献   

9.
Cellular aggregation, which occurs in both prokaryotes and eukaryotes, is controlled by the hydrophobicity as well as the electrokinetic potential of the cell surface and substratum. It is known that the Mycobacterium genus form aggregates, but the influence of sugar on the cellular aggregation has not been reported for this genus. The mutant strain Mycobacterium sp. MB-3683 that transforms sterol to androstenedione (AD), a steroidal precursor used by the pharmaceutical industries, was employed in this study. This strain was cultivated in a synthetic medium on three sugars (glycerol, glucose and fructose) at different concentrations, and at 144 h microbial growth, cellular aggregation, hydrophobicity, lipid content, fatty acid composition, and width of cellular walls were measured. It was observed that at different sugar concentrations, similar growth and pH were obtained. However, in fructose, the aggregation level was significantly high, followed by glycerol and glucose (fructose < glycerol < glucose). These results were confirmed using electron microscopy and the aggregate area quantified by image analysis. Hydrophobicity was the highest in fructose and the lowest in glucose. The total lipids, in contrast to cellular hydrophobicity, were higher in glucose than glycerol. Although, the hydrophilic-lipophilic balance (HLB) of principal fatty acids isolated was similar regardless of sugar used. In glycerol and fructose, the paraffins were observed, which are responsible for the high cellular hydrophobicity detected above. The width of cell wall of the organisms grown on glucose and fructose was similar, but in glycerol the walls were very thin. There is a correspondence between cell wall width and lipid content.  相似文献   

10.
The Effect of Sugars and Polyols on the Heat Resistance of Salmonellae   总被引:8,自引:5,他引:3  
S ummary . The heat resistance at 65° of 3 strains of salmonellae in solutions of sugars or polyols was enhanced as the concentration of the solutes increased. There was no linear relationship between heat resistance and water activity ( aw ), but for all solutes except glycerol there was a linear relationship between log D 65 and concentration (% w/w) of solute. Comparison of D 65 at a particular aw or percentage (w/w) solute concentration showed that the value decreased in the order: sucrose > glucose > sorbitol > fructose > glycerol. In glycerol, D 65 values were always very much lower than in any other solute. With sucrose–glycerol or sucrose–glucose mixtures, heat resistance depended both on the total concentration (% w/w) of solutes present and also on the aw of the solution.  相似文献   

11.
The growth response of the biocontrol agent Pantoea agglomerans to changes in water activity (a(w)), temperature, and pH was determined in vitro in nutrient yeast extract-sucrose medium. The minimum temperature at which P. agglomerans was able to grow was 267-272 kelvins (-6 to -1 degrees C), and growth of P. agglomerans did not change at varying pH levels (4.5-8.6). The minimum a(w) for growth was 0.96 in media modified with glycerol and 0.95 in media modified with NaCl or glucose. Solute used to reduce water activity had a great influence on bacterial growth, especially at unfavourable conditions (e.g., low pH or temperature). NaCl stimulated bacterial growth under optimum temperatures but inhibited it under unfavourable pH conditions (4.5 or 8.6). In contrast, the presence of glucose in the medium allowed P. agglomerans to grow over a broad range of temperature (3-42 degrees C) or pH (5-8.6) regimes. This study has defined the range of environmental conditions (a(w), pH, and temperature) over which the bacteria may be developed for biological control of postharvest diseases.  相似文献   

12.
Vibrio parahaemolyticus was grown at 36 C in tryptic soy broth (pH 7.8) containing added levels of NaCl ranging from 0.5 to 7.9% (wt/wt). The fastest generation time was 16.4 min in tryptic soy broth containing 2.9% NaCl (TSBS) which corresponded to a water activity (a(w)) of 0.992 (+/-0.005). Tryptic soy broth containing lower or higher levels of NaCl resulted in higher or lower a(w), respectively, and slower generation times. Growth was measured turbidimetrically at 36 C in TSBS containing added amounts of NaCl, KCl, glucose, sucrose, glycerol, or propylene glycol. The solutes used to reduce a(w) to comparable levels resulted in extended lag times of varied magnitude, dissimilar growth rates, and different cell numbers. Reduction of a(w) with glycerol was less inhibitory to growth than similar a(w) reductions with NaCl and KCl. Sucrose, glucose, and propylene glycol generally had the greatest effect on extending the lag times of V. parahaemolyticus when the addition of these solutes was made to establish similar a(w) levels lower than 0.992. Minimal a(w) for growth at 15, 21, 29, and 36 +/- 0.2 C for each of four strains of V. parahaemolyticus was tested in TSBS containing added solutes. Reduced a(w) was generally most tolerable at 29 C, whereas higher minimal a(w) for growth was required at 15 C. Solutes added to TSBS to achieve reduction in a(w), minimal a(w) for growth after 20 days, and incubation temperatures were as follows: glycerol, 0.937, 29 C; KCl, 0.945, 29 C; NaCl, 0.948, 29 C; sucrose, 0.957, 29 and 36 C; glucose, 0.983, 21 C; and propylene glycol, 0.986, 29 C. Each of the four strains tested responded similarly to investigative conditions. It appears that minimal a(w) for growth of V. parahaemolyticus depends upon the solute used to control a(w).  相似文献   

13.
Summary The production of a constitutive exo-pectinase byAspergillus sp. CH-Y-1043 grown on glucose, sucrose, fructose, glycerol and galacturonic acid is reported. The specific activity was found to be in the range of 26% to 75% of that produced with pectin or poly-galacturonic acid. The production of this exo-pectinase is strictly correlated to the exponential growth phase and it is highly sensitive to the pH of the culture medium  相似文献   

14.
The fungal concentration and flora in indoor and outdoor air in Yokohama, Japan were analyzed with a Reuter centrifugal air sampler and dichloran 18% glycerol agar (DG18), and compared with the levels assessed with potato dextrose agar (PDA). The number of fungal colony-forming units (CFU) in outdoor air was < 13–2750/m3; Cladosporium spp. predominated, followed by Alternaria spp. and Penicillium spp. The fungal concentration in outdoor air peaked in September. The concentrations of fungi in outdoor air (n = 288) were significantly correlated with the maximum temperature of the day, minimum temperature of the day, average temperature of the day, average velocity of wind of the day, average temperature of the month, average relative humidity of the month and precipitation of the month. In indoor air, the fungal CFU was < 13–3750/m3. Cladosporium spp. predominated, followed by the xerophilic fungi such as the Aspergillus restrictus group, Wallemia sebi, the A. glaucus group, and Penicillium spp. The fungal concentration in indoor air peaked in October. The concentrations of fungi in indoor air (n = 288) were significantly correlated with the indoor temperature, indoor relative humidity and the outdoor climatic factors mentioned above, except for the average velocity of wind of the day. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
AIMS: The objective of this work was to determine the role of different compatible solutes in adaptation of Pantoea agglomerans CPA-2 at different stages of growth to solute (0.98, 0.97, 0.96 aw), heat (35 and 40 degrees C) and acidic (pH 4.0, 5.0, 6.0) stress. METHODS AND RESULTS: Solute stress was imposed by using NaCl, glucose or glycerol, and pH was imposed with malic and citric acids. The accumulation of glycine-betaine, ectoine and amino acids in bacterial cells was quantified using high performance liquid chromathography (HPLC). There was a significant (P<0.05) accumulation of glycine-betaine (NaCl modified, 100-150 micromol g(-1) dry weight of cells) and ectoine (glucose modified media, >340 micromol g(-1) dry weight of cells) in the cells over a 48 h incubation period when compared with controls (<10 micromol g(-1) dry weight of cells). Chromatographic profile of amino acids was different with respect to control when NaCl or glucose was used as osmolyte. CONCLUSIONS: Pantoea agglomerans CPA-2 cells synthesised significant amounts of glycine-betaine and ectoine in response to imposed solute stress. However, these compounds and tested amino acids were not involved in cellular adaptation to either heat or pH stress. SIGNIFICANCE AND IMPACT OF THE STUDY: This type of information can be effectively applied to improve ecophysiological quality of cells of bacterial biocontrol agents for better survival and biocontrol efficacy in the phyllosphere of plants.  相似文献   

16.
Summary At. 75 and 80% relative humidity (RH), on a wheat germ flake medium, Aspergillus penicilloides grew abundantly and suppressed the population growth of Dermatophagoides pteronyssiunus. At 71% RH, A. penicilloides grew moderately and was only antagonistic to D. pteronyssinus when the fungus was previously incubated on the medium.On a human dander medium and on mattress dust, A. penicilloides grew moderately at 71% and 75% RH and stimulated the development of D. pteronyssinus populations. Also a moderate growth of Eurotium repens on human dander positively influenced D. pteronyssinus. Wallemia sebi and Penicillium brevicompactum grew slightly or did not grow at all at 75% RH. No effect was observed on D. pteronyssinus.It appears that xerophilic fungi may stimulate, and occasionally may reduce, the growth of house-dust mite populations in the natural environment.  相似文献   

17.
Juniper S  Abbott LK 《Mycorrhiza》2006,16(5):371-379
Colonisation of plant roots by some arbuscular mycorrhizal (AM) fungi is reduced in the presence of sodium chloride (NaCl), probably due to a direct effect of NaCl on the fungi. However, there appear to be differences between the fungi in their ability to colonise plants in the presence of NaCl. This experiment tested the hypothesis that propagules of different isolates and species of AM fungi from saline and nonsaline soils would differ in their ability to germinate and grow in the presence of NaCl in the soil solution. Spores or pieces of root colonised by a range of AM fungi were incubated between filters buried in soil to which NaCl had been added at concentrations of 0, 150 or 300 mM in the soil solution. At regular intervals, filters were removed from the soil and both the percentage of propagules which had germinated and the length of proliferating hyphae were determined. Germination of spores of AM fungi studied was delayed in the presence of NaCl, but the fungi differed in the extent to which germination was inhibited. Two isolates of Scutellospora calospora reached maximum germination in 300 mM NaCl, but neither of two isolates of Acaulospora laevis germinated in the presence of NaCl. Germination of spores of the other fungi, including some isolated from saline soil, fell between these extremes. For some fungi, the specific rate of hyphal extension was reduced by NaCl. For others, the specific rate of growth was similar in the presence of NaCl to that in the control treatment, but overall production of hyphae was reduced in the NaCl treatments because germination was reduced.  相似文献   

18.
By selecting for growth on glycerol, but absence of growth on glucose, a mutant of Saccharomyces carlsbergensis was isolated which does not grow on glucose, fructose, mannose, or sucrose, which shows long-term adaptation to maltose, but which can grow normally on galactose, ethanol, or glycerol. In the mutant, fructose diphosphatase is not inactivated after the addition of glucose, fructose or mannose to the medium, resulting in the simultaneous presence of fructose diphosphatase and phosphofructokinase activity. Under these conditions, a cycle is probably catalyzed between fructose-6-phosphate and fructose-1,6-diphosphate, resulting in the net consumption of adenosine triphosphate and an immediate stop of protein synthesis.  相似文献   

19.
Wallemia是中国的一新记录属,该属只有Wallemiasebi一个种。Wallemiasebi在PDA平板上对植物病原真菌尖孢镰刀菌(Fusariumoxysporum)和大丽花轮枝孢(Verticilliumdahliae)有强抑制作用。YG培养基上培养的Wallemiasebi菌丝体有RNase活性,在0·1mol/LpH7·5的磷酸缓冲液中其活性最高,达322·0U/mg。  相似文献   

20.
研究了不同碳源对Candidaglycerinogenes的菌体生长、发酵液pH值及代谢产物的影响,结果发现以葡萄糖、果糖等单糖为碳源时茵体生长较快,最终生物量比以蔗糖、麦芽糖等二糖为碳源时高20%~30%;导致发酵前12h发酵液pH值明显下降的主要因素是乳酸;与葡萄糖为碳源转化为甘油相比,果糖为碳源时更易累积乙醇;以蔗糖、麦芽糖为碳源时,用于转化生成甘油的碳源明显降低,碳源主要用于茵体自身生物合成及HMP途径,以蔗糖为碳源时,用于乳酸、丙酸及柠檬酸生物合成的碳源较麦芽糖明显提高,TCA途径代谢较为活跃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号