首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Summary 99.8% Deuterium oxide, as obtained commerically, has been shown to contain a contaminant which strongly inhibits calcium transport and binding by sarcoplasmic reticulum (S.R.) and the associated ATPase activity. The contaminant is removed by distillation of deuterium oxide. Calcium binding by S.R. is maximal at pH 6.5 whereas calcium transport (in the presence of oxalate) is maximal at a pH of 7.2 to 7.5. In the presence of deuterium oxide, these maxima are shifted to a pD of 7.2 and a pD of 7.5 to 8.0, respectively. The maximum binding and transport rates are not affected by the change from aqueous to deuterium oxide medium. The same phenomena are observed with the ATPase activity. In the presence of oxalate, calcium;magnesium ATPase is maximal at pH 7.2 and pD 8.0. The maximum rate is unchanged, however,At pH 7.2 or higher, the amount of calcium which may be bound by S.R. remains constant with time. At lower pH, calcium initially bound is slowly displaced from the membrane with time. It has been reported that deuterium oxide inhibits excitation-contraction coupling. The results presented here indicate that S.R. is probably not the site of deuterium oxide inhibition, and raise the possibility that the measured inhibition is due to an impurity in the deuterium oxide.  相似文献   

2.
R L Stein  D A Trainor 《Biochemistry》1986,25(19):5414-5419
The mechanism of inactivation of human leukocyte elastase (HLE) by the chloromethyl ketone MeOSuc-Ala-Ala-Pro-Val-CH2Cl was investigated. The dependence of the first-order rate constant for inactivation on concentration of chloromethyl ketone is hyperbolic and suggests formation of a reversible "Michaelis complex" prior to covalent interaction between the enzyme and inhibitor. However, the observed Ki value is 10 microM, at least 10-fold lower than dissociation constants for complexes formed from interaction of HLE with structurally related substrates or reversible inhibitors, and suggests that Ki is a complex kinetic constant, reflecting the formation and accumulation of both the Michaelis complex and a second complex. It is proposed that this second complex is a hemiketal formed from attack of the active site serine on the carbonyl carbon of the inhibitor. The accumulation of this intermediate may be a general feature of reactions of serine proteases and chloromethyl ketones derived from specific peptides and accounts for the very low Ki values observed for these reactions. The solvent deuterium isotope effect (SIE) on the inactivation step (ki) is 1.58 +/- 0.07 and is consistent with rate-limiting, general-catalyzed attack of the active site His on the methylene carbon of the inhibitor with displacement of chloride anion. The general catalyst is thought to be the active site Asp. In contrast, the SIE on the second-order rate constant for HLE inactivation, ki/Ki, is inverse and equals 0.64 +/- 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Yuan C  Kuwata O  Liang J  Misra S  Balashov SP  Ebrey TG 《Biochemistry》1999,38(14):4649-4654
The binding of chloride is known to shift the absorption spectrum of most long-wavelength-absorbing cone-type visual pigments roughly 30 nm to the red. We determined that the chloride binding constant for this color shift in the gecko P521 visual pigment is 0.4 mM at pH 6.0. We found an additional effect of chloride on the P521 pigment: the apparent pKa of the Schiff base in P521 is greatly increased as the chloride concentration is increased. The apparent Schiff base pKa shifts from 8.4 for the chloride-free form to >10.4 for the chloride-bound form. We show that this shift is due to chloride binding to the pigment, not to the screening of the membrane surface charges by chloride ions. We also found that at high pH, the absorption maximum of the chloride-free pigment shifts from 495 to 475 nm. We suggest that the chloride-dependent shift of the apparent Schiff base pKa is due to the deprotonation of a residue in the chloride binding site with a pKa of ca. 8.5, roughly that of the Schiff base in the absence of chloride. The deprotonation of this site results in the formation of the 475 nm pigment and a 100-fold decrease in the pigment's ability to bind chloride. Increasing the concentration of chloride results in the stabilization of the protonated state of this residue in the chloride binding site and thus increased chloride binding with an accompanying increase in the Schiff base pK.  相似文献   

4.
The effects of the microtubule stabilizing agent, deuterium oxide, on in vitro rat antral gastrin release were examined under basal conditions and during stimulation with isobutyl methylxanthine and bombesin plus isobutyl methylxanthine. Basal gastrin release from antral mucosal fragments was unaffected by increasing media concentration of deuterium oxide (12.5 to 75% v/v) during 1 h incubations. Gastrin release stimulated by isobutyl methylxanthine (0.1 mM), a potent inhibitor of phosphodiesterase activity, was inhibited completely by 12.5% deuterium oxide. Bombesin (1 × 10?8 M) in the presence of IBMX (0.1 mM) stimulated gastrin release (29.7 ± 1.9% of total gastrin). This was significantly greater than gastrin released under control conditions and with IBMX alone: 12.0 ± 1.1 (P < 0.001) and 20.2 ± 2.6% of total gastrin (P < 0.02), respectively. Partial inhibition of bombesin-IBMX stimulated gastrin release was achieved with 12.5% and 25% deuterium oxide and stimulation of gastrin release was inhibited completely by 50% deuterium oxide. In contrast to these results, gastrin release stimulated by the calcium ionophore A23187 was not inhibited by 50% deuterium oxide. Additional studies were performed to assess reversibility of the effects of deuterium oxide on stimulated gastrin release. Antral tissue exposed to initial culture medium containing deuterium oxide (50%) and bombesin-IBMX for 60 min was exchanged for medium without deuterium oxide. Restimulation of antral tissue during the second hour of culture resulted in gastrin release that was comparable to that observed in cultures not exposed to deuterium oxide during the first hour of culture. Reversibility of the effects of deuterium oxide suggest that a functional alteration in microtubular function is restored by removal of heavy water from the culture medium. Results of these experiments indicate that deuterium oxide is capable of inhibiting gastrin release stimulated by the peptide hormone bombesin and by the phosphodiesterase inhibitor isobutyl methylxanthine. Furthermore, these results suggest that increased levels of intracellular calcium achieved by the action of ionophore A23187 prevent microtubular stabilization by deuterium oxide.  相似文献   

5.
Studies on the absorption of sodium and chloride from the rumen of sheep   总被引:1,自引:0,他引:1  
The net absorption of Na and Cl from the temporarily isolated rumen of sheep was studied using an artificial ruminal fluid with different Na and K and constant Cl concentrations. The net absorption of Na and Cl was linearly correlated. The net absorption of Cl was abolished and a small net secretion was observed when no sodium was in the artificial rumen fluid. The net absorption of Na was significantly reduced under chloride free conditions. It is concluded that the active transport of Na and Cl is coupled. The mechanism of an Na-Cl cotransport can not be deduced from these studies.  相似文献   

6.
The amount of 11s aggregate in phycocyanin, normally stimulated by hydrophobic forces, is dramatically increased by the presence of deuterium oxide. Proteins in which hydrophobic forces are not proposed as a mechanism for aggregation are unaffected by deuterium oxide. These observations are consistent with the lower critical micelle concentration reported for ionic detergents in deuterium oxide. Phycocyanin samples containing a majority of material sedimenting faster than 11s were also investigated in the presence of deuterium oxide with the following findings: the most rapidly sedimenting species in water buffer is 24s; in deuterium oxide more than 10% of the protein sediments at 67s and substantial amounts of other species with sedimentation coefficients larger than 24s are present. These large quantities of species sedimenting faster than 24s are found in deuterium oxide buffers from pD5.5 to 7.0. Sucrose-density-gradient studies in deuterium oxide at pD6.0 confirm the presence of large amounts of more rapidly sedimenting species. Spectrophotometric studies on fractions from the sucrose-density-gradient experiments indicate with the presence of higher aggregates a red shift of the visible-absorption maximum and an enhancement of the E(620)/E(280) ratio. Fluorescence-emission studies show a greater relative fluorescence efficiency for these higher aggregates and are consistent with the suggested enhancement of higher aggregates in deuterium oxide. The existence of phycocyanin aggregates of such a large size is suggested to be of importance in vivo, with phycocyanin playing a role as a structural protein.  相似文献   

7.
The active site amino acid residues of lignin peroxidase are homologous to those of other peroxidases; however, in contrast to other peroxidases, no pH dependence is observed for the reaction of ferric lignin peroxidase with H2O2 to form compound I (Andrawis, A., Johnson, K.A., and Tien, M. (1988) J. Biol. Chem. 263, 1195-1198). Chloride binding is used in the present study to investigate this reaction further. Chloride binds to lignin peroxidase at the same site as cyanide and hydrogen peroxide. This is indicated by the following. 1) Chloride competes with cyanide in binding to lignin peroxidase. 2) Chloride is a competitive inhibitor of lignin peroxidase with respect to H2O2. The inhibition constant (Ki) is equal to the dissociation constant (Kd) of chloride at all pH values studied. Chloride binding is pH dependent: chloride binds only to the protonated form of lignin peroxidase. Transient-state kinetic studies demonstrate that chloride inhibits lignin peroxidase compound I formation in a pH-dependent manner with maximum inhibition at low pH. An apparent pKa was calculated at each chloride concentration; the pKa increased as the chloride concentration increased. Extrapolation to zero chloride concentration allowed us to estimate the intrinsic pKa for the ionization in the lignin peroxidase active site. The results reported here provide evidence that an acidic ionizable group (pKa approximately 1) at the active site controls both lignin peroxidase compound I formation and chloride binding. We propose that the mechanism for lignin peroxidase compound I formation is similar to that of other peroxidases in that it requires the deprotonated form of an ionizable group near the active site.  相似文献   

8.
HPLC-MS employing deuterium oxide and common MS-compatible deuterated additives in the mobile phase with electrospray ionization is shown to be a viable approach for the structural elucidation of impurities in pharmaceutically active agents following initial studies with protic mobile phases. This approach incorporates the hydrogen/deuterium (H/D) exchange reaction where deuterium is substituted for hydrogen at labile sites. Some developmental compounds studied include an amide, amine, lipopeptide, indole and methyl sulfone. H/D exchange is rapid and the chromatographic performance using deuterated mobile phases is comparable to protic counterparts.  相似文献   

9.
Rates of active chloride absorption by thin bean leaf slicesfrom 0.1 mM aqueous potassium chloride are about one-tenth ofthe rates for monovalent cation absorption by such slices andabout one-sixth of chloride absorption rates by excised beanroots. In the 2.0–5.0 mM concentration range chlorideabsorption rates of bean leaf and root tissues do not differmuch and are similar to those of monovalent cation absorptionrates.  相似文献   

10.
D G Cross 《Biochemistry》1975,14(2):357-362
Time-dependent changes in the ultraviolet absorbance of the adenine chromophore are observed in the stopped-flow spectrophotometer when adenosine and its analogs are rapidly transferred from protium oxide to deuterium oxide. These absorbance changes are shown to result from hydrogen exchange in the exocyclic amino groups of the purine ribonucleosides by using derivatives of adenosine in which methyl groups replace exchangeable hydrogens and by showing that the general characteristics of hydrogen exchange in adenosine analogs agree with those found here. A study of the dependence of hydrogen-exchange rate constants on adenosine, AMP, and phosphate concentration showed there is a second-order dependence on AMP concentration which is primarily due to intermolecular catalysis by the phosphate group of the nucleotide. The deuterium oxide perturbation difference spectrum, obtained at equilibrium, was found to contain two components that result from blue shifts of the adenine chromophore absorbance: (1) a shift cause by the substitution of deuterium for protium in the ring (N1) nitrogen and exocyclic nitrogens, and (2) a shift associated with a change in the polarizability of the medium. Since the theory of solvent perturbation, which is used to measure the relative "exposure" of chromophores in macromolecules, assumes that the spectral shifts observed are solely due to (2) above, the use of deuterium oxide as a measure of chromophore exposure to perturbants the size of water must be reexamined.  相似文献   

11.
(4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate (HG). This reaction involves decarboxylation, substituent migration, and aromatic oxygenation in a single catalytic cycle. HPPD is a unique member of the alpha-keto acid dependent oxygenases that require Fe(II) and an alpha-keto acid substrate to oxygenate or oxidize an organic molecule. We have examined the reaction coordinate of HPPD from Streptomyces avermitilis using rapid mixing pre-steady-state methods in conjunction with steady-state kinetic analyses. Acid quench reactions and product analysis of homogentisate indicate that HPPD as isolated is fully active and that experiments limited in dioxygen concentration with respect to that of the enzyme do involve a single turnover. These experiments indicate that during the course of one turnover the concentration of homogentisate is stoichiometric with enzyme concentration by approximately 200 ms, well before the completion of the catalytic cycle. Subsequent single turnover reactions were monitored spectrophotometrically under pseudo-first-order and matched concentration reactant conditions. Three spectrophotometrically distinct intermediates are observed to accumulate. The first of these is a relatively strongly absorbing species with maxima at 380 and 480 nm that forms with a rate constant (k(1)) of 7.4 x 10(4) M(-)(1) s(-)(1) and then decays to a second intermediate with a rate constant (k(2)) of 74 s(-)(1). The rate constant for the decay of the second intermediate (k(3)) is 13 s(-)(1) and is concomitant with the formation of the product, homogentisate, based on rapid quench and pre-steady-state fluorescence measurements. The rate constant for this process decreases to 7.6 s(-)(1) when deuterons are substituted for protons in the aromatic ring of the substrate. The release of product from the enzyme is rate limiting and occurs at 1.6 s(-)(1). This final event exhibits a kinetic isotope effect of 2 with deuterium oxide as the solvent, consistent with a solvent isotope effect on V(max) of 2.6 observed in steady-state experiments.  相似文献   

12.
Thiocyanate inhibition of active chloride absorption in Aplysia intestine   总被引:1,自引:0,他引:1  
This investigation was principally undertaken to examine the mechanism of active chloride absorption across the Aplysia californica intestine by using various inhibitors of ion transport. Isolated intestine, mounted between identical oxygenated sodium-free seawater solutions, maintained stable transmural potential differences (serosa negative) and short-circuit currents for several hours at 25 degrees C. The metabolic inhibitors, 2,4-dinitrophenol and fluoride, reduced both transmural potential difference and short-circuit current; however, the electrical characteristics were predominantly dependent upon glycolytic energy. The addition of thiocyanate to the mucosal solution inhibited both electrical characteristics in parallel, and this inhibition could be titrated according to the thiocyanate concentration. The short-circuit current was carried wholly by a net active chloride transfer from mucosa to serosa as determined by flux measurements. These results suggest that active chloride absorption may be mediated by a primary active transport process.  相似文献   

13.
The active site of sulfite oxidase has been investigated by X-ray absorption spectroscopy at the molybdenum K-edge at 4 K. We have investigated all three accessible molybdenum oxidation states, Mo(IV), Mo(V), and Mo(VI), allowing comparison with the Mo(V) electron paramagnetic resonance data for the first time. Quantitative analysis of the extended X-ray absorption fine structure indicates that the Mo(VI) oxidation state possesses two terminal oxo (Mo = O) and approximately three thiolate-like (Mo-S-) ligands and is unaffected by changes in pH and chloride concentration. The Mo(IV) and Mo(V) oxidation states, however, each have a single oxo ligand plus one Mo-O- (or Mo-N less than) bond, most probably Mo--OH, and two to three thiolate-like ligands. Both reduced forms appear to gain a single chloride ligand under conditions of low pH and high chloride concentration.  相似文献   

14.
This investigation was principally undertaken to examine the mechanism of active chloride absorption across the Aplysia californica intestine by using various inhibitors of ion transport. Isolated intestine, mounted between identical oxygenated sodium-free seawater solutions, maintained stable transmural potential differences (serosa negative) and short-circuit currents for several hours at 25°C. The metabolic inhibitors, 2,4-dinitrophenol and flouride, reduced both transmural potential difference and short-circuit current; however, the electrical characteristics were predominantly dependent upon glycolytic energy. The addition of thiocyanate to the mucosal solution inhibited both electrical characteristics in parallel, and this inhibition could be titrated according to the thiocyanate concentration. The short-circuit current was carried wholly by a net active chloride transfer from mucosa to serosa as determined by flux measurements. These results suggest that active chloride absorption may be mediated by a primary active transport process.  相似文献   

15.
The Cl-HCO3 exchange rate across turtle urinary bladder was studied by measuring the net flux of 36Cl in paired tissues. Serosal bicarbonate concentration and pH were held constant (10 mM and 7.6, respectively) while luminal composition was altered. The rate of net chloride absorption was the same at a luminal pH of 5 or 7 and at luminal HCO-3 concentrations of 0 and 10 mM. These results indicate that the affinity of the exchanger for luminal Cl- is much higher than that for luminal HCO-3 or OH-. Vanadate, an inhibitor of a number of ATPases, had no significant effect on chloride absorption.  相似文献   

16.
ABSTRACT. Deuterium oxide averts pupal diapause in the flesh fly Sarcophaga crassipalpis Macquart when fed to larvae or when applied topically to photosensitive embryos exposed to short daylength. Deuterium oxide was not effective in promoting diapause when presented to embryos or larvae reared at long daylength. The effect of deuterium oxide appears to be cumulative in the larval state: increasing exposure time progressively reduces diapause response. If flies reared on deuterium oxide are exposed to continuous darkness, the diapause response remains high, thus implying that the physiological capacity for diapause is not disrupted. We suggest that deuterium oxide exerts its effect on the circadian rhythm controlling diapause induction.  相似文献   

17.
The original fluid circuit theory used to explain active intestinal absorption of chloride is modified to include diffusion and secretion of chloride and osmosis. The general differential equation developed is integrated in a particular case. The definition, “effective concentration of chloride in the fluid passing into the intestinal lumen,” leads to simplified general expressions.  相似文献   

18.
A non-intrusive optical technique has been developed to monitor heartbeat in late third-instar Drosophila larvae. Heartbeat in this insect is an oscillation that is not temperature compensated. Deuterium oxide lengthens the period of a number of high and low frequency oscillators and clocks in a variety of organisms. To determine whether deuterium affects heart rate, flies were raised on proteated and deuterated media and their heartbeat was monitored at four temperatures ranging from 18 to 33 degrees C. The rate of heartbeat increased linearly with increasing temperature, and decreased with increasing concentrations of deuterium. There was a significant interaction between temperature and deuterium: the higher the concentration of deuterium oxide the less temperature-sensitive was the heart rate. Raising temperatures also increased the amount of "noise" in the rhythm: signal-to-noise ratio, which characterizes the amount of power in a rhythmic signal, decreased with increasing temperatures. Deuterium oxide had no effect on signal-to-noise ratio.  相似文献   

19.
The thermostability of glucose oxidase (beta-D-glucose: oxygen 1-oxidoreductase, EC 1.1.3.4) at 60 degrees C has been studied as a function of its concentration in various media (pure water and pure deuterium oxide). In deuterium oxide, glucose oxidase is more stable than in water, and two kinds of stabilizing effect have been observed: the medium-organization effect and the enzyme-concentration effect. This effect has been related to the glucose oxidase subunit structure. This enzyme contains four forms of subunit: monomer, dimer, trimer, and tetramer, which are all composed of the identical monomer. The monomers of glucose oxidase subunits are linked by the non-covalent bond. Only dimer and trimer possess the enzymatic activity. During glucose oxidase denaturing, monomers assemble into dimer, trimer, or tetramer. This redistribution behavior depends on the enzyme concentration and the nature of the medium.  相似文献   

20.
Oriented gel samples were prepared from halorhodopsin-containing membranes from Natronobacterium pharaonis, and their photoelectric responses to laser flash excitation were measured at different chloride concentrations. The fast component of the current signal displayed a characteristic dependency on chloride concentration, and could be interpreted as a sum of two signals that correspond to the responses at high-chloride and no-chloride, but high-sulfate, concentration. The chloride concentration-dependent transition between the two signals followed the titration curve determined earlier from spectroscopic titration. The voltage signal was very similar to that reported by another group (Kalaidzidis, I. V., Y. L. Kalaidzidis, and A. D. Kaulen. 1998. FEBS Lett. 427:59-63). The absorption kinetics, measured at four wavelengths, fit the kinetic model we had proposed earlier. The calculated time-dependent concentrations of the intermediates were used to fit the voltage signal. Although no negative electric signal was observed at high chloride concentration, the calculated electrogenicity of the K intermediate was negative, and very similar to that of bacteriorhodopsin. The late photocycle intermediates (O, HR', and HR) had almost equal electrogenicities, explaining why no chloride-dependent time constant was identified earlier by Kalaidzidis et al. The calculated electrogenicities, and the spectroscopic information for the chloride release and uptake steps of the photocycle, suggest a mechanism for the chloride-translocation process in this pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号