首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
温室气体甲烷减排是全球变化领域的研究热点,甲烷厌氧氧化(anaerobic methane oxidation,AOM)过程是一个以前被忽视的甲烷汇,在调控全球甲烷收支平衡及减缓温室效应等方面扮演着十分重要的角色。AOM微生物以甲烷为唯一电子供体,与硫酸盐(SO42-)、亚硝酸盐(NO2-)/硝酸盐(NO3-)、金属离子(Fe3+、Mn4+、Cr6+)等结合完成氧化还原过程,该过程是耦合碳、氮、硫循环的关键环节。本文系统整理分析了不同AOM类型、发生机理、相关功能微生物类群(ANME-1、ANME-2、ANME-3、NC10、MBG-D)及影响AOM过程的关键调控因子的最新研究进展。结果发现,目前80%以上研究都集中在对最常见电子受体类型(SO42-/NO3-/NO2-/Fe3+/Mn4+)的AOM相关过程,而忽视了潜在的新型电子受体(AQDS/HAs O42-/Cr6+/ClO4-等)的耦合作用过程和相对应的微生物类型及作用机理。对未来AOM研究方向提出展望,以期为研究甲烷厌氧氧化菌在不同生态系统中的生态分布及减缓全球温室气体排放提供新的思路。  相似文献   

2.
互营氧化产甲烷微生物种间电子传递研究进展   总被引:4,自引:1,他引:3  
甲烷是重要的温室气体,也是典型的可再生性生物质能源。目前约70%的大气甲烷排放来源于产甲烷微生物过程。在产甲烷环境中,产甲烷菌与互营细菌形成互营关系,从而克服有机质厌氧分解反应的热力学能垒,实现短链脂肪酸和醇类物质的互营氧化产甲烷过程。该过程中,种间电子传递是关键步骤。本文首先概述了甲烷的研究意义及微生物互营降解有机质产甲烷的过程,然后分别综述了种间H2转移、种间甲酸转移和种间直接电子传递这3种种间电子传递机制的起源、发展、研究现状和未来所需要解决的研究问题。  相似文献   

3.
姜怡如  高峥  李明聪 《微生物学通报》2020,47(10):3318-3328
甲烷是一种比CO_2更活跃的温室气体,微生物驱动的甲烷厌氧氧化(anaerobicoxidationof methane,AOM)过程对于降低全球甲烷的排放有着重要意义。参与AOM反应的最终电子受体主要分为三类,即硫酸盐、亚硝酸盐/硝酸盐以及以Fe(III)、Mn(IV)等为代表的金属离子。可溶性金属物质和不溶性金属矿物都可以被用作AOM的电子受体,这大大提高了参与金属依赖型甲烷厌氧氧化(metal-dependent anaerobic oxidation of methane,Metal-AOM)微生物的生态价值。目前研究聚焦在功能菌群、生态分布等方面。部分甲烷厌氧氧化古菌(anaerobic methanotrophic archaea,ANME)具有直接或间接参与Metal-AOM过程的能力。但由于功能菌群纯化富集和分离具有一定难度,有关其生理生化和生态学等特征的研究受到限制。同时,随着Metal-AOM被发现存在于不同水生生境中,其在污染治理领域的应用也被广泛讨论,但是河口生境尚缺乏深入研究。本文从Metal-AOM的发现入手,阐述了参与该过程的主要微生物及其在水域环境下的生态分布,并介绍了Metal-AOM的反应机制和在实际应用中的机遇与挑战。最后,根据现有研究结果,提出对功能菌群、机制及环保应用的研究展望,包括微生物分离纯化和影响因素、菌群代谢活性和作用机制的解析以及新型生产工艺的设计和发展应用,以期为今后的环境污染治理和工业应用提供借鉴意义。  相似文献   

4.
吴忆宁  梅娟  沈耀良 《生态科学》2018,37(4):231-240
甲烷是一种重要的温室气体, 研究证明甲烷厌氧氧化(AOM)对于降低全球甲烷的排放有着重要意义。参与AOM 反应的最终电子受体可分为三类, 即SO2– 4、NO2 /NO3以及以Fe3+、Cr5+等为代表的金属离子。本文基于甲烷厌氧氧化过程所利用的电子受体的差别, 结合不同类型AOM 反应微生物的基因型分析, 阐述了AOM 过程的反应机理、相关的微生物种类及其代谢途径。其中对AAA(AOM-associated archaea, 属于ANME-2d)的分离培养, 以及其利用硝酸盐、Fe3+、Cr5+等离子氧化甲烷的研究对认识AOM 反应机理和AOM 的实际应用有很大推动作用。本文还介绍了AOM 过程在环境污染控制领域实际应用中的最新研究进展, 对AOM 的实际应用及其在节能减排上的价值进行展望。AOM 过程的进一步研究对拓宽该过程的工程应用以及对正确认识全球碳、氮、硫循环均有着重要意义。  相似文献   

5.
内陆湿地与水体甲烷厌氧氧化功能微生物研究进展   总被引:2,自引:0,他引:2  
沈李东  金靖昊  刘心 《生态学报》2022,42(9):3842-3855
内陆湿地与水体(如湖泊、河流、水库等)是温室气体甲烷的重要排放源。微生物介导的甲烷厌氧氧化(anaerobic oxidation of methane,AOM)反应在控制内陆湿地与水体甲烷排放中起着不可忽视的作用,对缓解全球温室效应具有重要意义。内陆湿地与水体易形成缺氧环境,且电子受体的种类和数量繁多,是发生AOM反应的理想生境。近年来,不断有研究表明,内陆湿地与水体中存在多种电子受体(NO2-、NO3-、SO42-、Fe (III)等)驱动的AOM途径。NC10门细菌和甲烷厌氧氧化古菌(anaerobic methanotrophic archaea,ANME)的一新分支ANME-2d主导了湿地和水体环境中的AOM反应,其中ANME-2d具有根据环境条件选择不同电子受体的潜力。研究系统综述了内陆湿地与水体中不同电子受体驱动的AOM途径及其参与的主要功能微生物类群;分析了AOM反应在控制温室气体甲烷排放中的作用及其环境影响因素;总结了相关功能微生物的分子生物学检测方法及甲烷厌氧氧化活性测定的同位素示踪技术。最后,对未来相关研究方向进行了展望。  相似文献   

6.
陆地生态系统甲烷产生和氧化过程的微生物机理   总被引:8,自引:0,他引:8  
张坚超  徐镱钦  陆雅海 《生态学报》2015,35(20):6592-6603
陆地生态系统存在许多常年性或季节性缺氧环境,如:湿地、水稻土、湖泊沉积物、动物瘤胃、垃圾填埋场和厌氧生物反应器等。每年有大量有机物质进入这些环境,在缺氧条件下发生厌氧分解。甲烷是有机质厌氧分解的最终产物。产生的甲烷气体可通过缺氧-有氧界面释放到大气,产生温室效应,是重要的温室气体。产甲烷过程是缺氧环境中有机质分解的核心环节,而甲烷氧化是缺氧-有氧界面的重要微生物过程。甲烷的产生和氧化过程共同调控大气甲烷浓度,是全球碳循环不可分割的组成部分。对陆地生态系统甲烷产生和氧化过程的微生物机理研究进展进行了概要回顾和综述。主要内容包括:新型产甲烷古菌即第六和第七目产甲烷古菌和嗜冷嗜酸产甲烷古菌的发现;短链脂肪酸中间产物互营氧化过程与直接种间电子传递机制;新型甲烷氧化菌包括厌氧甲烷氧化菌和疣微菌属好氧甲烷氧化菌的发现;甲烷氧化菌生理生态与环境适应的新机制。这些研究进展显著拓展了人们对陆地生态系统甲烷产生和氧化机理的认识和理解。随着新一代土壤微生物研究技术的发展与应用,甲烷产生和氧化微生物研究领域将面临更多机遇和挑战,对未来发展趋势做了展望。  相似文献   

7.
甲烷氧化菌及其在环境治理中的应用   总被引:2,自引:0,他引:2  
魏素珍 《应用生态学报》2012,23(8):2309-2318
甲烷的生物氧化包括好氧氧化和厌氧氧化两种,分别由好氧甲烷氧化菌和厌氧甲烷氧化菌完成.由于该过程是减少自然环境中温室气体甲烷排放的重要途径,越来越受到各国学者的重视.本文主要对当前甲烷氧化菌的研究现状进行了综述,对好氧甲烷氧化菌的种类、参与氧化甲烷的关键酶,厌氧甲烷氧化菌的种类、参与的微生物菌种以及氧化机理进行了论述,并对这两类微生物在温室气体减排、污染物治理、废水生物脱氮、硫及金属元素回收等方面的应用现状及前景进行了分析.  相似文献   

8.
微生物厌氧甲烷氧化反硝化研究进展   总被引:4,自引:0,他引:4  
厌氧甲烷氧化反硝化过程(Denitrifying anaerobic methane oxidation,DAMO)以甲烷为电子供体进行反硝化作用,在实现废水脱氮处理的同时,可有效削减温室气体甲烷的排放,从而减缓全球温室效应。相关机制研究集中在逆向产甲烷途径耦合反硝化和亚硝酸盐依赖型厌氧甲烷氧化(nitrite-dependent anaerobic methane oxidation,n-damo)两个方面。鉴于厌氧甲烷氧化反硝化过程对全球碳氮物质循环的重要意义,本文对近年来厌氧甲烷氧化反硝化过程的研究进展进行了概述,着重阐述了有关厌氧甲烷氧化反硝化微生物富集培养物,特别是含Candidatus Methylomirabilis oxyfera(M.oxyfera)富集培养物的微生物特性、甲烷氧化反硝化的机理以及影响因子。在此基础上,探讨了厌氧甲烷氧化反硝化过程未来的研究方向和工业化应用前景。  相似文献   

9.
随着功能微生物介导的亚硝酸盐型厌氧甲烷氧化(nitrite-dependent anaerobic methane oxidation,N-DAMO)过程被发现,人们对自然界的碳氮循环有了全新的认识,该过程成为自然生态系统中温室气体甲烷的汇,同时还是氮污染的消减途径。本文系统介绍了N-DAMO过程反应机理以及参与该过程的亚硝酸盐型厌氧甲烷氧化细菌(Candidatus Methylomirabilis oxyfera)的生理生化特征,并对研究该功能菌的分子微生物方法进行了汇总。通过对不同自然生境中该细菌的研究报道进行总结分析,揭示各生境中年均降水量、年均温度、所处不同自然区等大尺度宏观环境因子及碳源、氮源、pH和氧气含量等生存因子对其群落结构的潜在影响,最后在展望中提出此功能菌在未来可深入研究的方向,期望能厘清厌氧甲烷氧化过程及其功能菌在碳、氮循环中的生态学功能。  相似文献   

10.
甲烷(CH4)是重要的温室气体和清洁能源。土壤铁氧化物作为重要的环境因子对有机质产甲烷过程具有重要影响。强氧化性且易微生物还原的铁氧化物对产甲烷具有抑制作用,其抑制机理为:(1)铁还原菌与产甲烷菌竞争产甲烷底物(乙酸或H_2)抑制产甲烷过程;(2)产甲烷菌利用Fe(Ⅲ)氧化底物抑制甲烷产生;(3)铁氧化物提高体系氧化还原电势抑制产甲烷过程。然而,具有导电性且晶型较高的铁氧化物可作为电子导体促进互营菌与产甲烷菌之间的直接电子传递,加速产甲烷过程。本文系统阐述了不同类型铁氧化物对有机质互营产甲烷过程的抑制或促进效应及作用机制,并在此基础上探讨了铁氧化物影响产甲烷过程的研究趋势,以期推动铁氧化物在抑制温室气体和促进清洁能源生产方面的实际应用。  相似文献   

11.
The anaerobic oxidation of methane (AOM) is one of the major sinks for methane on earth and is known to be mediated by at least two phylogenetically different groups of anaerobic methanotrophic Archaea (ANME-I and ANME-II). We present the first comparative in vitro study of the environmental regulation and physiology of these two methane-oxidizing communities, which occur naturally enriched in the anoxic Black Sea (ANME-I) and at Hydrate Ridge (ANME-II). Both types of methanotrophic communities are associated with sulfate-reducing-bacteria (SRB) and oxidize methane anaerobically in a 1:1 ratio to sulfate reduction (SR). They responded sensitively to elevated methane partial pressures with increased substrate turnover. The ANME-II-dominated community showed significantly higher cell-specific AOM rates. Besides sulfate, no other electron acceptor was used for AOM. The processes of AOM and SR could not be uncoupled by feeding the SRB with electron donors such as acetate, formate or molecular hydrogen. AOM was completely inhibited by the addition of bromoethanesulfonate in both communities, indicating the participation of methanogenic enzymes in the process. Temperature influenced the intensity of AOM, with ANME-II being more adapted to cold temperatures than ANME-I. The variation of other environmental parameters, such as sulfate concentration, pH and salinity, did not influence the activity of both communities. In conclusion, the ecological niches of methanotrophic Archaea seem to be mainly defined by the availability of methane and sulfate, but it remains open which additional factors lead to the dominance of ANME-I or -II in the environment.  相似文献   

12.
甲烷厌氧氧化作用是减少海洋底泥甲烷释放的重要生物地球化学过程,然而在陆地生态系统中甲烷厌氧氧化作用及其功能菌群的生态功能仍然不确定。对甲烷厌氧氧化菌多样性的研究可为减少甲烷排放提供重要科学依据。与传统的分离培养方法比较,分子检测方法是一种更为快速和高效的研究手段,可直接和全面的反映参与甲烷厌氧氧化作用的功能微生物。以DNA分子标记物为研究对象,重点探讨三类主要的分子标记基因,即16S rRNA,mcr A和pmo A,所采用的相关探针和引物信息,同时从定性和定量两个角度综述土壤甲烷厌氧氧化菌的多样性研究的主要进展,最后提出厌氧甲烷氧化菌多样性研究中存在的一些问题和相应的解决思路。  相似文献   

13.

Methane is produced microbially in vast quantities in sediments throughout the world’s oceans. However, anaerobic oxidation of methane (AOM) provides a near-quantitative sink for the produced methane and is primarily responsible for preventing methane emissions from the oceans to the atmosphere. AOM is a complex microbial process that involves several different microbial groups and metabolic pathways. The role of different electron acceptors in AOM has been studied for decades, yet large uncertainties remain, especially in terms of understanding the processes in natural settings. This study reports whole-core incubation methane oxidation rates along an estuarine gradient ranging from near fresh water to brackish conditions, and investigates the potential role of different electron acceptors in AOM. Microbial community structure involved in different methane processes is also studied in the same estuarine system using high throughput sequencing tools. Methane oxidation in the sediments was active in three distinct depth layers throughout the studied transect, with total oxidation rates increasing seawards. We find extensive evidence of non-sulphate AOM throughout the transect. The highest absolute AOM rates were observed below the sulphate-methane transition zone (SMTZ), strongly implicating the role of alternative electron acceptors (most likely iron and manganese oxides). However, oxidation rates were ultimately limited by methane availability. ANME-2a/b were the most abundant microbial phyla associated with AOM throughout the study sites, followed by ANME-2d in much lower abundances. Similarly to oxidation rates, highest abundances of microbial groups commonly associated with AOM were found well below the SMTZ, further reinforcing the importance of non-sulphate AOM in this system.

  相似文献   

14.
The anaerobic oxidation of methane (AOM) is an important methane sink in marine ecosystems mediated by still uncultured Archaea. We established an experimental system to grow AOM communities in different sediment samples. Approaches to show growth of the slow-growing anaerobic methanotrophs have been either via nucleic acids (quantitative PCR) or required long-term incubations. Previous long-term experiments with (13)C-labelled methane led to an unspecific distribution of the (13)C-label. Although quantitative PCR is a sensitive technique to detect small changes in community composition, it does not determine growth yield. Therefore, we tested an alternative method to detect a biomass increase of AOM microorganisms with (15)N-labelled ammonium as N-source. After only 3 weeks, significant (15)N-labelling became apparent in amino acids as major structural units of microbial proteins. This was especially evident in methane-containing incubations, showing the methane-dependent uptake of the (15)N-labelled ammonium by microorganisms. Cell counts demonstrated a two- and fourfold increase at ambient or elevated methane concentrations. With denaturing gradient gel electrophoresis, over 6 months incubation no changes in community composition of sulphate-reducing bacteria and archaea were detected. These data indicate doubling times for AOM microorganisms between 2 and 3.4 months. In conclusion, the (15)N-labelling approach proved to be a sensitive and fast way to show growth of extremely slow-growing microorganisms.  相似文献   

15.
The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments – namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogenic archaea. Anaerobic oxidation of methane presumably proceeds via a 'reversed' methanogenic pathway. The ANME are generally associated with sulfate-reducing bacteria (SRB) and sulfate is the only documented final electron acceptor for AOM in marine sediments. Our comparative study explored the coupling of AOM with sulfate reduction (SR) and methane generation (MOG) in microbial communities from Gulf of Mexico cold seep sediments that were naturally enriched with methane and other hydrocarbons. These sediments harbour a variety of ANME clades and SRB. Following enrichment under an atmosphere of methane, AOM fuelled 50–100% of SR, even in sediment slurries containing petroleum-associated hydrocarbons and organic matter. In the presence of methane and sulfate, the investigated microbial communities produce methane at a small fraction (∼10%) of the AOM rate. Anaerobic oxidation of methane, MOG and SR rates decreased significantly with decreasing concentration of methane, and in the presence of the SR inhibitor molybdate, but reacted differently to the MOG inhibitor 2-bromoethanesulfonate (BES). The addition of acetate, a possible breakdown product of petroleum in situ and a potential intermediate in AOM/SR syntrophy, did not suppress AOM activity; rather acetate stimulated microbial activity in oily sediment slurries.  相似文献   

16.
The anaerobic oxidation of methane (AOM) is an important methane sink in marine ecosystems mediated by still uncultured Archaea . We established an experimental system to grow AOM communities in different sediment samples. Approaches to show growth of the slow-growing anaerobic methanotrophs have been either via nucleic acids (quantitative PCR) or required long-term incubations. Previous long-term experiments with 13C-labelled methane led to an unspecific distribution of the 13C-label. Although quantitative PCR is a sensitive technique to detect small changes in community composition, it does not determine growth yield. Therefore, we tested an alternative method to detect a biomass increase of AOM microorganisms with 15N-labelled ammonium as N-source. After only 3 weeks, significant 15N-labelling became apparent in amino acids as major structural units of microbial proteins. This was especially evident in methane-containing incubations, showing the methane-dependent uptake of the 15N-labelled ammonium by microorganisms. Cell counts demonstrated a two- and fourfold increase at ambient or elevated methane concentrations. With denaturing gradient gel electrophoresis, over 6 months incubation no changes in community composition of sulphate-reducing bacteria and archaea were detected. These data indicate doubling times for AOM microorganisms between 2 and 3.4 months. In conclusion, the 15N-labelling approach proved to be a sensitive and fast way to show growth of extremely slow-growing microorganisms.  相似文献   

17.
The anaerobic oxidation of methane (AOM) is a major sink for methane on Earth and is performed by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Here we present a comparative study using in vitro stable isotope probing to examine methane and carbon dioxide assimilation into microbial biomass. Three sediment types comprising different methane-oxidizing communities (ANME-1 and -2 mixture from the Black Sea, ANME-2a from Hydrate Ridge and ANME-2c from the Gullfaks oil field) were incubated in replicate flow-through systems with methane-enriched anaerobic seawater medium for 5–6 months amended with either 13CH4 or H13CO3-. In all three sediment types methane was anaerobically oxidized in a 1:1 stoichiometric ratio compared with sulfate reduction. Similar amounts of 13CH4 or 13CO2 were assimilated into characteristic archaeal lipids, indicating a direct assimilation of both carbon sources into ANME biomass. Specific bacterial fatty acids assigned to the partner SRB were almost exclusively labelled by 13CO2, but only in the presence of methane as energy source and not during control incubations without methane. This indicates an autotrophic growth of the ANME-associated SRB and supports previous hypotheses of an electron shuttle between the consortium partners. Carbon assimilation efficiencies of the methanotrophic consortia were low, with only 0.25–1.3 mol% of the methane oxidized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号