首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Encystation and sporulation are crucial developmental transitions for solitary and social amoebae, respectively. Whereas little is known of encystation, sporulation requires both extra- and intracellular cAMP. After aggregation of social amoebae, extracellular cAMP binding to surface receptors and intracellular cAMP binding to cAMP-dependent protein kinase (PKA) act together to induce prespore differentiation. Later, a second episode of PKA activation triggers spore maturation. Adenylyl cyclase B (ACB) produces cAMP for maturation, but the cAMP source for prespore induction is unknown. We show that adenylyl cyclase G (ACG) protein is upregulated in prespore tissue after aggregation. acg null mutants show reduced prespore differentiation, which becomes very severe when ACB is also deleted. ACB is normally expressed in prestalk cells, but is upregulated in the prespore region of acg null structures. These data show that ACG induces prespore differentiation in wild-type cells, with ACB capable of partially taking over this function in its absence.  相似文献   

2.
A variety of extracellular signals lead to the accumulation of cAMP which can act as a second message within cells by activating protein kinase A (PKA). Expression of many of the essential developmental genes in Dictyostelium discoideum are known to depend on PKA activity. Cells in which the receptor-coupled adenylyl cyclase gene, acaA, is genetically inactivated grow well but are unable to develop. Surprisingly, acaA(-) mutant cells can be rescued by developing them in mixtures with wild-type cells, suggesting that another adenylyl cyclase is present in developing cells that can provide the internal cAMP necessary to activate PKA. However, the only other known adenylyl cyclase gene in Dictyostelium, acgA, is only expressed during germination of spores and plays no role in the formation of fruiting bodies. By screening morphological mutants generated by Restriction Enzyme Mediated Integration (REMI) we discovered a novel adenylyl cyclase gene, acrA, that is expressed at low levels in growing cells and at more than 25-fold higher levels during development. Growth and development up to the slug stage are unaffected in acrA(-) mutant strains but the cells make almost no viable spores and produce unnaturally long stalks. Adenylyl cyclase activity increases during aggregation, plateaus during the slug stage and then increases considerably during terminal differentiation. The increase in activity following aggregation fails to occur in acrA(-) cells. As long as ACA is fully active, ACR is not required until culmination but then plays a critical role in sporulation and construction of the stalk.  相似文献   

3.
It has been suggested that all intracellular signaling by cAMP during development of Dictyostelium is mediated by the cAMP-dependent protein kinase, PKA, since cells carrying null mutations in the acaA gene that encodes adenylyl cyclase can develop so as to form fruiting bodies under some conditions if PKA is made constitutive by overexpressing the catalytic subunit. However, a second adenylyl cyclase encoded by acrA has recently been found that functions in a cell autonomous fashion during late development. We have found that expression of a modified acaA gene rescues acrA- mutant cells indicating that the only role played by ACR is to produce cAMP. To determine whether cells lacking both adenylyl cyclase genes can develop when PKA is constitutive we disrupted acrA in a acaA- PKA-C(over) strain. When developed at high cell densities, acrA- acaA- PKA-C(over) cells form mounds, express cell type-specific genes at reduced levels and secrete cellulose coats but do not form fruiting bodies or significant numbers of viable spores. Thus, it appears that synthesis of cAMP is required for spore differentiation in Dictyostelium even if PKA activity is high.  相似文献   

4.
Cyclic AMP (cAMP) functions as the extracellular chemoattractant in the aggregation phase of Dictyostelium development. There is some question, however, concerning what role, if any, it plays intracellularly in motility and chemotaxis. To test for such a role, the behavior of null mutants of acaA, the adenylyl cyclase gene that encodes the enzyme responsible for cAMP synthesis during aggregation, was analyzed in buffer and in response to experimentally generated spatial and temporal gradients of extracellular cAMP. acaA- cells were defective in suppressing lateral pseudopods in response to a spatial gradient of cAMP and to an increasing temporal gradient of cAMP. acaA- cells were incapable of chemotaxis in natural waves of cAMP generated by majority control cells in mixed cultures. These results indicate that intracellular cAMP and, hence, adenylyl cyclase play an intracellular role in the chemotactic response. The behavioral defects of acaA- cells were surprisingly similar to those of cells of null mutants of regA, which encodes the intracellular phosphodiesterase that hydrolyzes cAMP and, hence, functions opposite adenylyl cyclase A (ACA). This result is consistent with the hypothesis that ACA and RegA are components of a receptor-regulated intracellular circuit that controls protein kinase A activity. In this model, the suppression of lateral pseudopods in the front of a natural wave depends on a complete circuit. Hence, deletion of any component of the circuit (i.e., RegA or ACA) would result in the same chemotactic defect.  相似文献   

5.
We have isolated two adenylyl cyclase genes, designated ACA and ACG, from Dictyostelium. The proposed structure for ACA resembles that proposed for mammalian adenylyl cyclases: two large hydrophilic domains and two sets of six transmembrane spans. ACG has a novel structure, reminiscent of the membrane-bound guanylyl cyclases. An aca- mutant, created by gene disruption, has little detectable adenylyl cyclase activity and fails to aggregate, demonstrating that cAMP is required for cell-cell communication. cAMP is not required for motility, chemotaxis, growth, and cell division, which are unaffected. Constitutive expression in aca- cells of either ACA or ACG, which is normally expressed only during germination, restores aggregation and the ability to complete the developmental program. ACA expression restores receptor and guanine nucleotide-regulated adenylyl cyclase activity, while activity in cells expressing ACG is insensitive to these regulators. Although they lack ACA, which has a transporter-like structure, the cells expressing ACG secrete cAMP constitutively.  相似文献   

6.
Dictyostelium development starts with the chemotactic aggregation of up to 10(6) amoebae in response to propagating cAMP waves. cAMP is produced by the aggregation stage adenylyl cyclase (ACA) and cells lacking ACA (aca null) cannot aggregate. Temperature-sensitive mutants of ACA were selected from a population of aca null cells transformed with a library of ACA genes, a major segment of which had been amplified by error-prone PCR. One mutant (tsaca2) that can complement the aggregation null phenotype of aca null cells at 22 degrees C but not at 28 degrees C was characterized in detail. The basal catalytic activity of the enzyme in this mutant was rapidly and reversibly inactivated at 28 degrees C. Using this mutant strain we show that cell movement in aggregates and mounds is organized by propagating waves of cAMP. Synergy experiments between wild-type and tsaca2 cells, shifted to the restrictive temperature at various stages of development, showed that ACA plays an important role in the control of cell sorting and tip formation.  相似文献   

7.
8.
cAMP receptor 1 and G-protein alpha-subunit 2 null cell lines (car1- and g alpha 2-) were examined to assess the roles that these two proteins play in cAMP stimulated adenylyl cyclase activation in Dictyostelium. In intact wild-type cells, cAMP stimulation elicited a rapid activation of adenylyl cyclase that peaked in 1-2 min and subsided within 5 min; in g alpha 2- cells, this activation did not occur; in car1- cells an activation occurred but it rose and subsided more slowly. cAMP also induced a persistent activation of adenylyl cyclase in growth stage cells that contain only low levels of cAMP receptor 1 (cAR1). In lysates of untreated wild-type, car1-, or g alpha 2- cells, guanosine 5'-O-'(3-thiotriphosphate) (GTP gamma S) produced a similar 20-fold increase in adenylyl cyclase activity. Brief treatment of intact cells with cAMP reduced this activity by 75% in control and g alpha 2- cells but by only 8% in the car1- cells. These observations suggest several conclusions regarding the cAMP signal transduction system. 1) cAR1 and another cAMP receptor are linked to activation of adenylyl cyclase in intact cells. Both excitation signals require G alpha 2. 2) cAR1 is required for normal adaptation of adenylyl cyclase. The adaptation reaction caused by cAR1 is not mediated via G alpha 2. 3) Neither cAR1 nor G alpha 2 is required for GTP gamma S-stimulation of adenylyl cyclase in cell lysates. The adenylyl cyclase is directly coupled to an as yet unidentified G-protein.  相似文献   

9.
DdGCA is a Dictyostelium guanylyl cyclase with a topology typical for mammalian adenylyl cyclases containing 12 transmembrane-spanning regions and two cyclase domain. In Dictyostelium cells heterotrimeric G-proteins are essential for guanylyl cyclase activation by extracellular cAMP. In lysates, guanylyl cyclase activity is strongly stimulated by guanosine 5'-3-O-(thio) triphosphate (GTPgammaS), which is also a substrate of the enzyme. DdGCA was converted to an adenylyl cyclase by introducing three point mutations. Expression of the obtained DdGCA(kqd) in adenylyl cyclase-defective cells restored the phenotype of the mutant. GTPgammaS stimulated the adenylyl cyclase activity of DdGCA(kqd) with properties similar to those of the wild-type enzyme (decrease of K(m) and increase of V(max)), demonstrating that GTPgammaS stimulation is independent of substrate specificity. Furthermore, GTPgammaS activation of DdGCA(kqd) is retained in several null mutants of Galpha and Gbeta proteins, indicating that GTPgammaS activation is not mediated by a heterotrimeric G-protein but possibly by a monomeric G-protein.  相似文献   

10.
Kriebel PW  Parent CA 《IUBMB life》2004,56(9):541-546
Cyclic AMP metabolism is essential for the survival of the social amoebae Dictyostelium discoideum. Three distinct adenylyl cyclases are expressed and required for the normal development of this simple eukaryote. The adenylyl cyclase expressed during aggregation, ACA, is related to the mammalian and Drosophila G protein-coupled enzymes and is responsible for the synthesis of cAMP that is required for cell-cell signaling in early development. ACB harbors histidine kinase and response-regulator domains and is required for terminal differentiation. Finally, the adenylyl cyclase expressed during germination, ACG, acts as an osmosensor and is involved in controlling spore germination. Together, these enzymes generate the various levels of cAMP that are required for D. discoideum to transition from uni- to multi-cellularity. This review will highlight the properties of these enzymes and describe the signaling cascades that lead to their activation.  相似文献   

11.
12.
Intracellular and secreted cAMPs play crucial roles in controlling cell movement and gene regulation throughout development of the social amoeba Dictyostelium discoideum. cAMP is produced by three structurally distinct ACs (adenylate cyclases), ACA, ACG and ACB, which have distinctive but overlapping patterns of expression and, as concluded from gene disruption studies, seemingly overlapping functions. In addition to gene disruption, acute pharmacological abrogation of protein activity can be a powerful tool to identify the protein's role in the biology of the organism. We analysed the effects of a range of compounds on the activity of ACA, ACB and ACG to identify enzyme-specific modulators. Caffeine, which was previously used to specifically block ACA function, also inhibited cAMP accumulation by ACB and ACG. IPA (2',3'-O-isopropylidene adenosine) specifically inhibits ACA when measured in intact cells, without affecting ACB or ACG. All three enzymes are inhibited by the P-site inhibitor DDA (2',5'-dideoxyadenosine) when assayed in cell lysates, but not in intact cells. Tyrphostin A25 [alpha-cyano-(3,4,5-trihydroxy)cinnamonitrile] and SQ22536 [9-(tetrahydro-2'-furyl)adenine] proved to be effective and specific inhibitors for ACG and ACA respectively. Both compounds acted directly on enzyme activity assayed in cell lysates, but only SQ22536 was also a specific inhibitor when added to intact cells.  相似文献   

13.
When nutrients are depleted, Dictyostelium cells undergo cell cycle arrest and initiate a differentiation program for survival. We have found a novel gene, srsA, which is rapidly expressed in the first 5 min following the removal of nutrients and is turned off within an hour. This gene encodes a small protein with no significant similarity to previously characterized proteins. Disruption of srsA results in delayed expression of the early genes acaA and carA that encode adenylyl cyclase and the cAMP receptor necessary for chemotactic aggregation, respectively. Streaming is delayed several hours and the aggregates are larger than normal in the mutant strains. These phenotypes are cell-autonomous. Overexpression of srsA also results in delayed aggregation. Some of the slugs of the srsA(OE) strains showed stalked migration reminiscent of the slugs of the related species Dictyostelium mucoroides. The terminal structures formed by srsA(OE) cells were grossly abnormal and contained very few viable spores. When cells overexpressing srsA were developed together with an excess of wild-type cells, the fruiting bodies were still abnormal, indicating that the mutant cells have a dominant effect on late development. These findings suggest that srsA may be involved in both the starvation response and late differentiation.  相似文献   

14.
H Ma  M Gamper  C Parent    R A Firtel 《The EMBO journal》1997,16(14):4317-4332
We have identified a MAP kinase kinase (DdMEK1) that is required for proper aggregation in Dictyostelium. Null mutations produce extremely small aggregate sizes, resulting in the formation of slugs and terminal fruiting bodies that are significantly smaller than those of wild-type cells. Time-lapse video microscopy and in vitro assays indicate that the cells are able to produce cAMP waves that move through the aggregation domains. However, these cells are unable to undergo chemotaxis properly during aggregation in response to the chemoattractant cAMP or activate guanylyl cyclase, a known regulator of chemotaxis in Dictyostelium. The activation of guanylyl cyclase in response to osmotic stress is, however, normal. Expression of putative constitutively active forms of DdMEK1 in a ddmek1 null background is capable, at least partially, of complementing the small aggregate size defect and the ability to activate guanylyl cyclase. However, this does not result in constitutive activation of guanylyl cyclase, suggesting that DdMEK1 activity is necessary, but not sufficient, for cAMP activation of guanylyl cyclase. Analysis of a temperature-sensitive DdMEK1 mutant suggests that DdMEK1 activity is required throughout aggregation at the time of guanylyl cyclase activation, but is not essential for proper morphogenesis during the later multicellular stages. The activation of the MAP kinase ERK2, which is essential for chemoattractant activation of adenylyl cyclase, is not affected in ddmek1 null strains, indicating that DdMEK1 does not regulate ERK2 and suggesting that at least two independent MAP kinase cascades control aggregation in Dictyostelium.  相似文献   

15.
In Saccharomyces cerevisiae, adenylyl cyclase forms a complex with the 70-kDa cyclase-associated protein (CAP). By in vitro mutagenesis, we assigned a CAP-binding site of adenylyl cyclase to a small segment near its C terminus and created mutants which lost the ability to bind CAP. CAP binding was assessed first by observing the ability of the overproduced C-terminal 150 residues of adenylyl cyclase to sequester CAP, thereby suppressing the heat shock sensitivity of yeast cells bearing the activated RAS2 gene (RAS2Val-19), and then by immunoprecipitability of adenylyl cyclase activity with anti-CAP antibody and by direct measurement of the amount of CAP bound. Yeast cells whose chromosomal adenylyl cyclase genes were replaced by the CAP-nonbinding mutants possessed adenylyl cyclase activity fully responsive to RAS2 protein in vitro. However, they did not exhibit sensitivity to heat shock in the RAS2Val-19 background. When glucose-induced accumulation of cyclic AMP (cAMP) was measured in these mutants carrying RAS2Val-19, a rapid transient rise indistinguishable from that of wild-type cells was observed and a high peak level and following persistent elevation of the cAMP concentration characteristic of RAS2Val-19 were abolished. In contrast, in the wild-type RAS2 background, similar cyclase gene replacement did not affect the glucose-induced cAMP response. These results suggest that the association with CAP, although not involved in the in vivo response to the wild-type RAS2 protein, is somehow required for the exaggerated response of adenylyl cyclase to activated RAS2.  相似文献   

16.
The adenylyl cyclase gene, cyr1, of Schizosaccharomyces pombe has been cloned. We have begun an analysis of the function and regulation of adenylyl cyclase by disrupting this gene and by over-expressing all or parts of this gene in various strains. cyr1- strains are viable and contain no measurable cyclic AMP. They conjugate and sporulate under conditions that normally inhibit wild-type strains. Strains containing the cyr1 coding sequences transcribed from the strong adh1 promoter contain greatly elevated adenylyl cyclase activity, as measured in vitro, but only modestly elevated cAMP levels. Such strains conjugate and sporulate less frequently than wild-type cells upon nutrient limitation. Strains which carry the wild-type cyr1 gene but that also express high levels of the amino terminal domain of adenylyl cyclase behave much like cyr1-strains, suggesting that the amino terminal domain can bind a positive regulator. A protein that copurifies with the adenylyl cyclase of S. pombe cross-reacts to antiserum raised against the S. cerevisiae adenylyl cyclase-associated regulatory protein, CAP.  相似文献   

17.
GNA-1 and GNA-2 are two G protein alpha subunits from the filamentous fungus Neurospora crassa. Loss of gna-1 leads to multiple phenotypes, while Deltagna-2 strains do not exhibit visible defects. However, Deltagna-1Deltagna-2 mutants are more affected in Deltagna-1 phenotypes. Here we report a biochemical investigation of the roles of GNA-1 and GNA-2 in cAMP metabolism. Assays of Mg2+ ATP-dependent adenylyl cyclase activity (+/-GppNHp) in extracts from submerged cultures indicated that Deltagna-2 strains were normal, whereas Deltagna-1 and Deltagna-1Deltagna-2 strains had only 10-15% the activity of the wild-type control. Levels of the Gbeta protein, GNB-1, were normal in Deltagna-1 strains, excluding altered GNB-1 production as a factor in loss of adenylyl cyclase activity. Steady-state cAMP levels in Deltagna-1 and Deltagna-1Deltagna-2 mutants were reduced relative to wild-type under conditions that result in morphological abnormalities (solid medium), while levels in submerged culture were normal. cAMP phosphodiesterase activities in submerged cultures of Deltagna-1 and/or Deltagna-2 strains were lower than in wild-type; the individual deletions were additive in decreasing activity. These results suggest that in submerged culture, N. crassa, like mammalian systems, possesses compensatory mechanisms that maintain cAMP at relatively constant levels. Furthermore, the finding that Mg2+ATP-dependent adenylyl cyclase activity in wild-type cell extracts could be inhibited using anti-GNA-1 IgG suggests that GNA-1 directly interacts with adenylyl cyclase in N. crassa.  相似文献   

18.
Increase of cytosolic free calcium played a pivotal role in apoptotic cells induced by trichosanthin. However, little is known about the influence of cytosolic calcium increase on adenylyl cyclase activity and intracellular cAMP signaling pathway in HeLa cells. The present study showed that an influx of extracellular Ca2+ initiated by trichosanthin was required for the suppression of adenylyl cyclase activity and decrease of intracellular cAMP level. Furthermore, this inhibition was abolished by activation of PKC rather than PKA. Therefore, our results suggested that increase of cytosolic calcium induced by trichosanthin inhibits cAMP levels via suppression of adenylyl cyclase activity.  相似文献   

19.
20.
Starving Dictyostelium amoebae use cAMP as a chemoattractant to gather into aggregates, as a hormone-like signal to induce cell differentiation, and as an intracellular messenger to control stalk- and spore cell maturation and germination of spores. In this chapter we describe the respective roles of the three adenylyl cyclases ACA, ACB and ACG in controlling cAMP signaling during development and we discuss how cAMP signals are processed by the cells to trigger the large repertoire of gene regulatory events that is under control of this signal molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号