首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden.  相似文献   

2.
Tree and stand level variables affecting the species richness, cover and composition of epiphytic lichens on temperate broad-leaved trees (Fraxinus excelsior, Quercus robur, Tilia cordata, Ulmus glabra, and U. laevis) were analysed in floodplain forest stands in Estonia. The effect of tree species, substrate characteristics, and stand and regional variables were tested by partial canonical correspondence analysis (pCCA) and by general linear mixed models (GLMM). The most pronounced factors affecting the species richness, cover and composition of epiphytic lichens are acidity of tree bark, bryophyte cover and circumference of tree stems. Stand level characteristics have less effects on the species richness of epiphytic lichens, however, lichen cover and composition was influenced by stand age and light availability. The boreo-nemoral floodplain forests represent valuable habitats for epiphytic lichens. As substrate-related factors influence the species diversity of lichens on temperate broad-leaved trees differently, it is important to consider the effect of each tree species in biodiversity and conservation studies of lichens. Nomenclature Randlane et al. (2007) for lichens; Leht (2007) for vascular plants.  相似文献   

3.
Conservation and sustainable forestry are essential in a multi-functional landscape. In this respect, ecological studies on epiphytes are needed to determine abiotic and biotic factors associated with high diversity. The aim of the present study was to evaluate relative sensitivity of conservation targets (epiphytic bryophytes and lichens) in relation to contrasting environmental variables (tree species, tree diameter at breast height, bark crevice depth, pH, tree inclination, pH, forest stand age, area and type) in boreo-nemoral forests. The study was conducted in Latvian 34 woodland key habitat (WKH) boreo-nemoral forest stands. Generalized linear mixed models and canonical correspondence analysis showed that tree species and tree bark pH were the most important variables explaining epiphytic bryophyte and lichen composition and richness (total, Red-listed, WKH indicator species). Forest stand level factors, such as stand size and habitat type, had only minor influence on epiphytic species composition and richness. The results of the present study indicate a need to maintain the diversity of tree species and large trees, particularly Acer platanoides, Carpinus betulus, Fraxinus excelsior, Populus tremula, Tilia cordata, Ulmus glabra and Ulmus laevis in conservation of epiphytic bryophyte and lichen communities in the future.  相似文献   

4.
The Uholka-Shyrokyi Luh area of the Carpathian Biosphere Reserve is considered the largest and the most valuable primeval beech forest in Europe for biodiversity conservation. To study the impact of different topographic and forest-stand variables on epiphytic lichen diversity a total of 294 systematically distributed sampling plots were surveyed and 198 epiphytic lichen species recorded in this forest landscape, which has an uneven-aged structure. The obtained data were analysed using a non-metric multidimensional ordination and a generalized linear model. The epiphytic lichen species density at the plot level was mainly influenced by altitude and forest-stand variables. These variables are related to both the light availability i.e. canopy closure, and the habitat diversity, i.e. the developmental stage of the forest stands and the mean stem diameter. We found that lichen species density on plots with a relatively open canopy was significantly higher than on plots with a fairly loose or closed canopy structure. The late developmental stage of forest stands, which is characterized by a large number of old trees with rough and creviced bark, had a strong positive effect on lichen species density. In the Uholka-Shyrokyi Luh primeval forest the mean stem diameter of beech trees significantly correlated with lichen species density per plot. Similar trends in the species diversity of nationally red-listed lichens were revealed. Epiphytic lichens with a high conservation value nationally and internationally were found to be rather abundant in the Uholka-Shyrokyi Luh area, which shows its international importance for the conservation of forest-bound lichens.  相似文献   

5.
Question: What are the edge effect responses of epiphytic lichen communities in Mediterranean Quercus pyrenaica forest? Location: Central Spain. Methods: We established ten transects perpendicular to a road dissecting a well conserved remnant of Q. pyrenaica forest into two sections. Transects extended from the forest/road edge to 100 m into the forest. Data were collected from seven plots in each transect at different distances from the edge. Variables were grouped into stand scale variables (distance to edge, number of trees per plot, mean diameter per plot, irradiance) and tree scale variables (diameter and height of sampled trees, aspect of the sampled square and relative height of the square). We used General Mixed Linear Models and constrained ordination techniques to test the hypothesis that the spatio‐temporal heterogeneity of light and water controls the occurrence of lichens and bryophytes along the edge‐interior gradient in the Q. pyrenaica forest. Results: Microclimatic parameters vary in a non‐linear way; edge and interior stands showed the most divergent and extreme values. Although the micro‐environment within Mediterranean forests is heterogeneous, interior conditions are apparently suitable for the performance of some specific forest epiphytes. Consequently, species richness does not show significant differences along the gradient. Total epiphytic cover increases towards the forest interior, but distance to the edge together with other predictors at the tree scale (aspect and height of the square) are the most relevant predictors for the composition and structure of these communities. Conclusions: Composition and structure of epiphytic communities in a Mediterranean semi‐deciduous forest are affected by the edge between the forest and the road constructed. Since some extremely rare lichens only occur at interior stands, the conservation of these threatened elements requires urgent conservation measures because well preserved and unmanaged forests in the Mediterranean region are very rare.  相似文献   

6.
In Italy, many lichen species rare at the national level share their ecological requirements with Lobaria pulmonaria. The aim of this work is to test this lichen as a potential indicator for assessing forest sites which are worthy of conservation for lichens in Italy. The hypothesis to be tested is that stands hosting large and viable populations of this lichen also host nationally rare and sensitive lichen species. The study was carried out in two large forested areas of Italy under different bioclimatic conditions and with different forest types: Cansiglio Forest, in NE Italy, and Cilento in SW Italy. Three types of stands characterized by different abundance levels of L. pulmonaria were identified in each site. Ten plots for each type of stand were surveyed in each site. Macrolichens were surveyed on a total of 180 trees. The abundance of L. pulmonaria proved to be a valuable indicator of forest stands hosting nationally rare lichen species and cyanolichens in different forest types and in different bioclimatic conditions. Significant differences in species richness, in the occurrence and abundance of nationally rare lichen species and cyanolichens, and in species composition were found in both sites among stands with different levels of L. pulmonaria. Results are expected to contribute to the development of more lichen-oriented criteria in nature protection policies.  相似文献   

7.
Question: What are the responses of epiphytic lichens to the intensity of management along a large environmental gradient in Mediterranean Quercus forests? Location: Central Spain. Methods: This study was carried out on 4590 trees located in 306 forest stands dominated by Quercus faginea or Quercus ilex ssp. ballota. The effect of forest management and other predictor variables on several species diversity indicators were studied. Variables modelled were total species richness, cyanolichen richness and community composition. A large number of predictor variables were included: forest fragmentation (patch size, stand variability), climate and topographic (altitude, slope, sun radiation, annual rainfall and mean annual temperature) and intensity of management. General linear models and constrained ordination techniques were used to model community traits and species composition, respectively. Results: Total richness and especially cyanolichens richness were significantly and negatively affected by the intensity of management. Lichen composition was influenced by management intensity, climatic and topographic variables and stand variability. Conclusions: In Mediterranean forests, human activities related to forestry, agricultural and livestock use cause impoverishment of lichen communities, including the local disappearance of the most demanding species. The conservation of unmanaged forests with a dense canopy is crucial for lichen diversity.  相似文献   

8.
The study examines the changes of epiphytic lichen diversity in differently aged stands developing after clear cutting and pine planting on fertile habitats typical for deciduous forests. The study was conducted within one large complex consisting of pine, mixed pine-hornbeam and typical old oak-linden-hornbeam forests in northern Poland. Epiphytic lichens were recorded in 50 study plots randomly selected within 5 forest stand classes of a different structure and age, ranging from 80 to over 220 years. Altogether 143 lichen species were recorded, of which only 41 were entirely nonspecific, and were occurring in all the studied forest stand classes. Significant differences in lichen species richness between stand classes were found and the number of species increases with the forest age. Lichen species composition also differs and its changes progress towards restoration of lichen biota typical for deciduous forest consistent with the habitat. The age of the forest has the most significant effect on the biodiversity of lichen biota. Microhabitat space provided by oaks is highly desirable since it greatly enriches lichen biota in forests. Phorophyte specificity of particular lichens were assessed. Hornbeam and oak have the greatest number of species mostly confined to them and constitute a main refuge for lichens with a high conservation value. The changes of lichen biota are basically parallel with the changes of the forest stand structure. The selection of some parts within managed pine forests that should not be assigned for cutting in the future can be a simple procedure which helps to restore and preserve forest biodiversity.  相似文献   

9.
Lichen epiphytes are applied as excellent environmental indicators worldwide. However, very little is known about epiphytic lichen communities and their response to forest dynamics in subtropical China. This paper proposes the applications of the cover, diversity, and functional traits of epiphytic lichens to assess environmental changes associated with succession in subtropical forests of southwest China. Bole lichens were sampled from 120 plots of eight representative forest types in the Ailao Mountains. Total cover, species richness, diversity and community structure of bole lichens differed significantly among forest types, and the highest cover and diversity occurred in the Populus bonatii secondary forest (PBSF). Sixty-one indicator species were associated with particular forest types and more than 50% occurred in the PBSF. Both cover and diversity of most lichen functional groups varied regularly during forest succession. Lichen pioneer species were not displaced by competitively superior species as succession proceeds and cyanolichens were more prevalent in secondary forests. The results also highlight the importance of habitat variables such as canopy openness, host diversity, forest age, tree size, the size of the largest tree, tree density, and basal area on the lichen community. Consequently, our findings support the notion that epiphytic lichens, in terms of cover, diversity, species composition and functional traits can be used as effective indicators for large-scale and long-term forest monitoring. More importantly, the narrowly lobed foliose group was the best candidate indicator of environmental conditions in this region. The combined application of lichen indicator species and functional groups seemed to be a more reliable and more powerful method for monitoring forest dynamics in subtropical montane ecosystems.  相似文献   

10.
Tree crowns typically cover the vast majority of the surface area of trees, but they are rarely considered in diversity surveys of epiphytic bryophytes and lichens, especially in temperate Europe. Usually only stems are sampled. We assessed the number of bryophyte and lichen species on stems and in crowns of 80 solitary sycamore maple trees (Acer pseudoplatanus) at six sites in wooded pastures in the northern Alps. The total number of species detected per tree ranged from 13 to 60 for bryophytes, from 25 to 67 for lichens, and from 42 to 104 for bryophytes and lichens considered together. At the tree level, 29 % of bryophyte and 61 % of lichen species were recorded only in the crown. Considering all sampled trees together, only 4 % of bryophyte, compared to 34 % of lichen species, were never recorded on the stem. Five out of 10 red-listed bryophyte species and 29 out of 39 red-listed lichen species were more frequent in crowns. The species richness detected per tree was unexpectedly high, whereas the proportion of exclusive crown species was similar to studies from forest trees. For bryophytes, in contrast to lichens, sampling several stems can give a good estimation of the species present at a site. However, frequency estimates may be highly biased for lichens and bryophytes if crowns are not considered. Our study demonstrates that tree crowns need to be considered in research on these taxa, especially in biodiversity surveys and in conservation tasks involving lichens and to a lesser degree also bryophytes.  相似文献   

11.
The effect of management related factors on species richness of epiphytic bryophytes and lichens was studied in managed deciduous-coniferous mixed forests in Western-Hungary. At the stand level, the potential explanatory variables were tree species composition, stand structure, microclimate and light conditions, landscape and historical variables; while at tree level host tree species, tree size and light were studied. Species richness of the two epiphyte groups was positively correlated. Both for lichen and bryophyte plot level richness, the composition and diversity of tree species and the abundance of shrub layer were the most influential positive factors. Besides, for bryophytes the presence of large trees, while for lichens amount and heterogeneity of light were important. Tree level richness was mainly determined by host tree species for both groups. For bryophytes oaks, while for lichens oaks and hornbeam turned out the most favourable hosts. Tree size generally increased tree level species richness, except on pine for bryophytes and on hornbeam for lichens. The key variables for epiphytic diversity of the region were directly influenced by recent forest management; historical and landscape variables were not influential. Forest management oriented to the conservation of epiphytes should focus on: (i) the maintenance of tree species diversity in mixed stands; (ii) increment the proportion of deciduous trees (mainly oaks); (iii) conserving large trees within the stands; (iv) providing the presence of shrub and regeneration layer; (v) creating heterogeneous light conditions. For these purposes tree selection and selective cutting management seem more appropriate than shelterwood system.  相似文献   

12.
In the tropics, corticolous lichen richness and cover tend to increase from the trunk base to the top of the crown of trees. In this study we calculated the total beta diversity of the lichen community along a vertical gradient on Quercus laurina in Mexican cloud forest. By comparing the richness and cover of the lichens by zone, we show that foliose and fruticose lichens are a minor component of the total lichen species richness, but have a higher cover than the crustose lichens. Five zones were identified along each phorophyte (n = 15) with a diameter at breast height >40 cm. A total of 92 species were identified. Of these, 38% were found only in a single zone, 51% were shared between the different zones and 11% occurred across all zones. Species richness and cover increased from the lowest to the highest zones of the phorophytes. Dissimilarity in species composition between the zones could be explained by species replacement. An indicator species analysis revealed that only a few species, e.g. Hypotrachyna vexans, H. cf. sublaevigata and Ramalina cf. sinaloensis prefer a particular zone. The results show that the lichen community associated with Quercus laurina phorophytes is highly diverse and suggest that species richness and cover are related to the zone and the various growth forms.  相似文献   

13.
We investigated how lichen carbon-based secondary compounds (CBSCs) affect abundance of invertebrates in five lichen species growing on the forest floor (Cladonia rangiferina, Cladonia stellaris) or on tree trunks (Evernia prunastri, Hypogymnia physodes, Pseudevernia furfuracea). To do this, CBSCs were removed by rinsing lichen thalli in acetone (which has no adverse effects on the lichens) and the lichens were re-transplanted in their natural habitat. After 4 months there was higher abundance of mites, springtails and spiders in the three epiphytic lichens that had their CBSC concentrations reduced. The increase in predatory spiders following CBSC reduction suggests that the compounds have multitrophic consequences. The acetone treatment reduced the number of nematodes in four of the lichen species. Given that lichens serve as important habitats for a diverse range of invertebrates, increased knowledge of how lichen CBSCs may regulate their abundance helps us to better understand the role that lichens and their defence compounds play in structuring forest food webs.  相似文献   

14.
The post-fire colonization of a Quercus ilex forest by epiphytic lichens has been studied in Catalonia (NE Spain), eleven years after a fire. Specific richness and lichen biomass have been studied separately on Quercus ilex , Erica arborea , Rosmarinus officinalis . and Cistus albidus , to reveal possible differences among phorophytes in facilitating lichen establishment. Shrubs play an important role in colonization by common species whereas the stools of Quercus ilex offer a suitable substratum for rarer species. Cistus albidus , with the highest lichen diversity and 98·2% of the total biomass of macrolichens, is the most suitable phorophyte for lichen establishment.  相似文献   

15.
Abstract

This study is focused on the selection of variables affecting lichen and bryophyte diversity in Mediterranean deciduous forests. Plots representing two forest types (Fagus sylvatica and Quercus cerris forests) and two forest continuity categories (old‐growth (OG) and non‐OG forests) were selected in the Cilento and Vallo di Diano National Park (Italy). The presence and the abundance of bryophytes and epiphytic lichens were recorded. Structural variables of the forests and vascular plant species richness have been used as predictors. A strong positive correspondence between the two groups of organisms was found. Higher species richness and the distribution of rare species are related to OG stands, while a qualitative (species composition) rather than a quantitative (species richness) difference between the two forest types was observed. Some species elsewhere considered as indicators of forest continuity, such as Lobaria pulmonaria, Antitrichia curtipendula, and Homalothecium sericeum, are associated with OG forests, independently from forest type, suggesting that they can be regarded as suitable indicators also in Mediterranean forests. Finally, our results suggest that old trees, high levels of basal area, a broad range of diameter classes, and high understory diversity are the main structural features affecting cryptogamic communities, while no correlation was found with the occurrence of deadwood.  相似文献   

16.
The ecology of many tropical rain forest organisms, not the least in Africa, remains poorly understood. Here, we present a detailed ecological study of epiphytic lichens in the equatorial montane rain forest of Bwindi National Park (331 km2), Uganda. We evaluated all major lichen growth forms, including selected groups of crustose lichens. In 14 transects at elevations of 1290 m to 2500 m, we sampled 276 trees belonging to 60 species. We recorded all lichen species on each tree trunk between ground level and 2 m above the ground, yielding 191 lichen species in 67 genera, with a mean of 4.7 species per tree. We used non‐metric multi‐dimensional scaling to separate epiphytic lichen assemblages according to tree species composition and elevation. Structural equation modeling indicated that elevation influenced tree species composition and that tree species composition largely determined lichen species composition. Thus, elevation acted indirectly on the lichen assemblages. Further studies examining factors such as bark properties and lichen colonization ecology may clarify what determines the association between tree species and lichen assemblages. The link between lichen assemblages and large‐scale elevation patterns, as well as disturbance and regrowth histories, warrants further study. An analysis of lichen species composition on individual tree species that occur over large elevation ranges would distinguish the effect of tree species on lichen assemblages from the effect of elevation and thus climate. Our study highlights the limited extent of our knowledge of tropical epiphytic lichens.  相似文献   

17.
Assessing diversity is among the major tasks in ecology and conservation science. In ecological and conservation studies, epiphytic cryptogams are usually sampled up to accessible heights in forests. Thus, their diversity, especially of canopy specialists, likely is underestimated. If the proportion of those species differs among forest types, plot-based diversity assessments are biased and may result in misleading conservation recommendations. We sampled bryophytes and lichens in 30 forest plots of 20 m × 20 m in three German regions, considering all substrates, and including epiphytic litter fall. First, the sampling of epiphytic species was restricted to the lower 2 m of trees and shrubs. Then, on one representative tree per plot, we additionally recorded epiphytic species in the crown, using tree climbing techniques. Per tree, on average 54% of lichen and 20% of bryophyte species were overlooked if the crown was not been included. After sampling all substrates per plot, including the bark of all shrubs and trees, still 38% of the lichen and 4% of the bryophyte species were overlooked if the tree crown of the sampled tree was not included. The number of overlooked lichen species varied strongly among regions. Furthermore, the number of overlooked bryophyte and lichen species per plot was higher in European beech than in coniferous stands and increased with increasing diameter at breast height of the sampled tree. Thus, our results indicate a bias of comparative studies which might have led to misleading conservation recommendations of plot-based diversity assessments.  相似文献   

18.
Functional traits have become important tools for evaluating the response of epiphytic lichens to environmental changes. In this study, we evaluated which predictors related to fragmentation, habitat quality and climate were driving the richness and cover of lichen growth form, type of photobiont and reproduction traits, at both fragment and plot levels in a Temperate-Mediterranean area dominated by Quercus forests. At fragment level, patch size and summer rainfall positively contributed to richness in most of the traits, while tree diameter and slope were the most important drivers, especially for the type of reproduction and growth form at plot scale. High coverage of growth forms especially sensitive to fragmentation were indicative of high values of total species richness, while early-colonizers indicated the opposite. These results provide important information on how lichen traits respond to environmental conditions in an ecotone area where a shift towards a drier climate is more likely to occur.  相似文献   

19.
Tree hollows often harbor animals and microorganisms, thereby storing nutritive resources derived from their biological activities. The outflows from tree hollows can create unique microenvironments, which may affect communities of epiphytic organisms on trunk surfaces below the hollows. In this study, we tested whether the species richness and composition of epiphytic bryophytes (liverworts and mosses) and lichens differ above and below tree hollows of Aria japonica and Cercidiphyllum japonicum in a Japanese temperate forest. The species richness of epiphytic bryophytes and lichens did not differ above and below hollows; however, the species composition of bryophytes differed significantly above and below hollows. Indicator species analyses showed that the moss species Anomodon tristis and the liverwort species Porella vernicosa were significantly more common below than above hollows, while the liverwort species Radula japonica and four lichen species, including Leptogium cyanescens, occurred more frequently above than below hollows. Our results highlight that tree hollows can produce unique microenvironments on trunk surfaces that potentially contribute to the maintenance of epiphytic diversity on a local scale.  相似文献   

20.
To identify representative quantitative criteria for the creation of a future Red List of epiphytic lichens, 849 trees in 132 long-term ecological observation plots in the Swiss Central Plateau and the Pre-Alps were surveyed by standard sampling. Based on the trees, frequency data of the lichen taxa observed are described by the log series model, indicating the controlling effect of few ecological factors. Based on the plots, four classes of scarcity, each comprising 25% of the species, were established. As a contribution to the development of a national, representative survey of lichens, α-diversity (species richness, species density) andβ-diversity (dissimilarity) were calculated in terms of region, vegetation formation, vegetation belt and for their combinations. Differences in lichen diversity between the Central Plateau and the Pre-Alps were caused by the bigger elevational range in the Pre-Alps, which resulted in a higher species richness. α-Diversity of forest and non-forest were similar, whereas each vegetation formation showed one third of its species restricted to it. The contributions to the total lichen diversity of crustose, foliose and fruticose as well as of generative and vegetative species was calculated. Specific features along the altitudinal gradient of vegetation belts emerged: the percentage of crustose and generative lichens declined with every altitudinal step, increased in fruticose and vegetative lichens, and was the same in foliose species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号