首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variability of inorganic nutrient concentrations in leaves   总被引:2,自引:0,他引:2  
  相似文献   

2.
1. Nitrogen (N) and phosphorus (P) fluxes via excretion by benthic invertebrates were quantified in a eutrophic reservoir (Acton Lake, Ohio, U.S.A.). We quantified variation in nutrient fluxes seasonally (June until November 1997), spatially (three sites) and among taxa (chironomids, tubificid oligochaetes and Chaoborus). 2. The three taxa differed in spatial distribution and contribution to nutrient fluxes. Tubificids were the most abundant taxon at two oxic sites (1.5 and 4 m depth), and were exceedingly rare at an anoxic, hypolimnetic site (8 m). Chironomids were abundant only at the shallowest oxic site. Chaoborus was the only abundant taxon at the anoxic site. Total benthic invertebrate biomass was greatest at the shallowest site and lowest at the anoxic, hypolimnetic site. 3. Mass‐specific excretion rate [μmol NH4–N or soluble reactive P (SRP) excreted mg dry mass–1 h–1] varied among experiments and was influenced by temperature. Differences among taxa were not significant. Thus, nutrient flux through benthic invertebrates was affected more by total invertebrate biomass and temperature than by species composition. 4. Fluxes of N and P via benthic invertebrate excretion (μmol NH4–N or SRP m–2 day–1) were greatest at the oxic sites, where fluxes were dominated by the excretion of tubificids and chironomids. The N and P fluxes at the anoxic site were much lower, and were dominated by excretion by Chaoborus. The ratio of N and P excreted by the benthic invertebrate assemblage varied seasonally and was lowest at the anoxic site. 5. Comparison with other measured inputs shows that excretion by benthic invertebrates could be an important source of nutrients, especially of P. However, the relative importance of nutrient excretion by the benthos varies greatly spatially and temporally.  相似文献   

3.
Nutrient transport in mycorrhizas occurs across specialized interfaces which are the result of corrdinated development of the organisms. The structural modifications give rise to large areas of either inter- or intra-cellular interface in which wall synthesis is frequently modified and in which altered distribution of membrane bound ATPases is important, particularly with respect to mechanisms that may be involved in bidirectional transfer of nutrients. Except in orchid mycorrhizas, net movement of organic carbon from plant to fungus occurs, complemented by mineral nutrient movement in the opposite direction. The general consensus is that sustained transfer at rates that will maintain the growth and development of the organisms requires increases in the rates at which nutrients are lost from the organisms; possible mechanisms for this are discussed. The transfer processes are essential in determining both plant and fungal productivity and an approach to calculating the efficiency of the symbiosis in terms of the expenditure of carbon (or of phosphorus) is discussed.  相似文献   

4.
1. The relative contribution of roots and leaves to nutrient uptake by submerged stream macrophytes was tested in experiments where plants were grown in an outdoor flow-channel system. Water was supplied from a nutrient-rich stream with inorganic nitrogen and phosphorus concentrations typical of Danish streams.
2. Four submerged macrophyte species were tested, Elodea canadensis , Callitriche cophocarpa , Ranunculus aquatilis and Potamogeton crispus, and all species were able to satisfy their demand for mineral nutrients by leaf nutrient uptake alone. This was evident from manipulative experiments showing that removal of the roots had no negative impact on the relative growth rate of the plants. Further, the organic N and P concentrations of the plant tissue was constant with time for the de-rooted plants.
3. Enrichment of water and/or sediment had no effect on the relative growth rate of two species, E. canadensis and C. cophocarpa , indicating that in situ nutrient availability was sufficient to cover the needs for growth. Despite the lack of a response in growth rate, a reduced root/shoot biomass ratio was observed with nutrient enrichment of water and/or sediment, and an increased tissue-P concentration in response to open-water enrichment.
4. The open-water nutrient concentrations of the stream in which the experiments were performed are in the upper part of the range found for Danish farmland streams (the majority of Danish streams). Still, however, the negligible effect of nutrient enrichment on the growth of submerged macrophytes observed suggests that mineral nutrient availability might play a minor role in controlling macrophyte growth in most Danish streams.  相似文献   

5.
Cycling of six mineral elements (N, P, K, Na, Ca and Mg) was studied in a humid subtropical grassland at Cherrapunji, north-eastern India during 1988-1989. Elemental concentrations in the shoot of four dominant grass species,viz., Arundinella khaseana, Chrysopogon gryllus, Eragrostiella leioptera andEulalia trispicata were very low, and none of the species appears suitable for fodder use. Among different vegetation compartments, live root was the largest reservoir of all the nutrients (except Ca) followed by live shoot, dead shoot, litter and dead root. For Ca, live shoot was the major storage compartment. The total annual uptake (kg ha-1) was 137.3, 10.4, 51.1, 5.5, 8.7 and 18.2 for N, P, K, Na, Ca and Mg, respectively. In an annual cycle 98% N, 77% P, 49% K, 109% Na, 87% Ca and 65% Mg returned to the soil through litter and belowground detritus. A major portion of N, P and Na was recycled through the belowground system, whereas nearly half of K, Ca and Mg was recycled through the shoot system. Precipitation acts as the source of N and P input, but at the same time causes loss of cations.  相似文献   

6.
树木细根养分内循环   总被引:5,自引:1,他引:4  
黄石竹  张彦东  王政权 《生态学杂志》2006,25(11):1395-1399
养分内循环是树木减少养分损失,提高养分利用效率的重要途径。树木细根寿命短、周转快.每年大量凋落死亡,因此,近20多年来树木细根养分内循环的研究逐渐受到人们的重视。关于树木细根养分内循环目前的研究结论比较复杂。本文从细根在树木地下部分养分内循环中的重要地位、细根养分内循环对树木减少养分损失的重要性、细根中各养分元素内循环的研究现状以及细根养分内循环研究方法存在的问题等方面综合论述了国内外的进展情况,并对今后的研究趋势进行了展望。  相似文献   

7.
神农架常绿落叶阔叶混交林凋落物养分特征   总被引:4,自引:1,他引:3  
刘璐  赵常明  徐文婷  申国珍  谢宗强 《生态学报》2019,39(20):7611-7620
凋落物是联结陆地生态系统植物与土壤养分的重要媒介,了解凋落物养分特征有助于理解陆地生态系统物质循环的机理。该研究于2015年收集了神农架地区常绿落叶阔叶混交林的新鲜凋落物及现存凋落物,测定其不同器官中大量元素(C、N、P、K、Ca、Mg)的含量,据此分析其养分含量、养分归还量、养分储量及化学计量比的特征。结果发现:该常绿落叶阔叶混交林新鲜凋落物的C、K养分含量显著高于现存凋落物,N、P、Ca、Mg养分含量显著低于现存凋落物;其凋落物大量元素的养分归还量及养分储量大小顺序均为C Ca N Mg K P,分别为1569.84、52.44、34.82、6.24、5.24、1.30 kg hm~(-2) a~(-1)及1835.29、87.87、51.17、12.12、3.90、1.95 kg hm~(-2) a~(-1);其新鲜凋落物及现存凋落物的C∶N∶P分别为1307.33∶27.73∶1及976.48∶26.77∶1,新鲜凋落物的C∶N、C∶P显著高于现存凋落物,N∶P无显著区别。研究表明,新鲜凋落物与现存凋落物养分含量之间的差异与不同元素在分解过程中的可淋溶性及生物固持等因素有关。该地区常绿落叶阔叶混交林凋落物养分归还量及养分储量相对于亚热带阔叶林平均水平较低;且显著低于喀斯特地区同类型森林,主要与其凋落物产量、降水量及植被类型有关。该森林生态系统新鲜凋落叶与中国及全球范围内阔叶树种凋落叶相比C∶N较低,C∶P、N∶P较高,这可能是由于该地区N沉降及P限制现象较为严重所致。  相似文献   

8.
研究了不同施肥模式下下辽河平原潮棕壤稻田土壤速效养分的供应能力及水稻的养分分配.结果表明:各处理0~20 cm速效养分供应能力均高于20~40 cm,其变异也大于20~40 cm(速效氮除外);有机、无机肥相结合有利于提高土壤速效养分的供应能力;水稻氮和磷的分配主要集中在籽实中,钾的分配则主要集中在秸秆中.采用秸秆还田措施有利于缓解钾肥资源的不足,保持钾素的循环再利用,维持土壤钾库,减少钾肥投入,降低农业生产成本,减轻环境污染.  相似文献   

9.
《Molecular cell》2021,81(18):3731-3748
  1. Download : Download high-res image (143KB)
  2. Download : Download full-size image
  相似文献   

10.
不同年龄毛竹林养分分布及生物循环特征   总被引:1,自引:0,他引:1  
毛竹林是我国重要的森林资源类型,由于片面追求经济效益,许多竹阔混交林被改造为纯林,造成其土壤质量和立地生产力不同程度退化。因此研究毛竹林生产力和营养元素循环特征,对保持毛竹林持续生产力具有重要意义。以湖南桃江县桃花江林场毛竹林作为研究对象,将同一年龄毛竹的株数占据60%以上林地的标准划分各年龄段毛竹林,并研究不同年龄(1年,3年和5年)毛竹林生态系统营养元素含量、积累和分布格局以及生物循环特征。结果表明:竹林层营养元素平均含量均以N和K含量最高,Ca和P较低,各营养元素在毛竹不同器官的含量存在差异且随竹龄变化而变化;因毛竹林年龄不同,死地被物各层次的营养元素含量不同,并且同一年龄毛竹林亦随层次不同而异;土壤层N、P、K元素随着土层深度的增加而递减,Ca则随土层深度增加而增加。竹林层营养元素总积累量为338.31—1104.72 kg/hm~2,死地被物层为37.69—46.94 kg/hm~2,土壤层为56952.67—63783.22 kg/hm~2。不同年龄毛竹林生态系统营养元素年吸收量为237.41—338.3 kg/hm~2,归还量为20.84—86.47 kg/hm~2,存留量为216.57—267.05 kg/hm~2,利用系数为0.27—1.00,循环系数为0.09—0.25,周转时间在6.17—40.33年之间。  相似文献   

11.
Changes in precipitation can influence soil water and nutrient availability, and thus affect plant nutrient conservation strategies. Better understanding of how nutrient conservation changes with variations in water availability is crucial for predicting the potential influence of global climate change on plant nutrient-use strategy. Here, green-leaf nitrogen (N) and phosphorus (P) concentrations, N- and P-resorption proficiency (the terminal N and P concentration in senescent leaves, NRP and PRP, respectively), and N- and P-resorption efficiency (the proportional N and P withdrawn from senescent leaves prior to abscission, NRE and PRE, respectively) of Leymus chinensis (Trin.) Tzvel., a typical perennial grass species in northern China, were examined along a water supply gradient to explore how plant nutrient conservation responds to water change. Increasing water supply at low levels (< 9000 mL/year) increased NRP, PRP and PRE, but decreased green-leaf N concentration. It did not significantly affect green-leaf P concentration or NRE. By contrast, all N and P conservation indicators were not significantly influenced at high water supply levels (> 9000 mL/year). These results indicated that changes in water availability at low levels could affect leaf-level nutrient characteristics, especially for the species in semiarid ecosystems. Therefore, global changes in precipitation may pose effects on plant nutrient economy, and thus on nutrient cycling in the plant-soil systems.  相似文献   

12.
过度放牧是中国典型草原生态系统日趋退化的主要原因。由于养分输入-输出的不均衡,将导致土壤养分库的耗竭,而确定退化草原受何种养分的制约是对其进行恢复的重要途径之一。应用NP化学计量学的原理和方法,有望代替传统的野外养分添加实验,来研究不同草地受养分限制的状况。本文采用这两种方法在物种水平上研究限制性养分。此外,陆地植物器官中的NP比相对恒定是植物在地球上生存的重要适应机制,养分添加为验证这一假说提供了一种有效手段。为此,我们采用野外N素添加的方法,研究了内蒙古典型草原两种演替系列样地中(围封22年的样地A和围封2年的样地B)羊草(Leymuschinensis(Trin.)Tzvel.)和黄囊苔草(CarexkorshinskyiKom)生物量和NP化学计量学特征的变异。N素添加梯度分别为0、5、15、30、50、80gNH4NO3.m-2.a-1。研究结果表明,在施肥第一年,两个物种的地上生物量和P含量均不受N素添加的影响;相关分析结果表明,在施肥第二年两种植物的NP比不受氮素添加的影响;施肥可以显著提高羊草和黄囊苔草地上器官的含N量,P含量只是在第二年有显著增大的趋势;2001年,两块样地中羊草和黄囊苔草的氮磷含量在不同施肥处理下均呈极显著地正相关。这表明,样地A中黄囊苔草缺乏P,样地B中羊草缺乏N,施肥两年后,两个物种器官中的N  相似文献   

13.
过度放牧是中国典型草原生态系统日趋退化的主要原因.由于养分输入-输出的不均衡,将导致土壤养分库的耗竭,而确定退化草原受何种养分的制约是对其进行恢复的重要途径之一.应用N:P化学计量学的原理和方法,有望代替传统的野外养分添加实验,来研究不同草地受养分限制的状况.本文采用这两种方法在物种水平上研究限制性养分.此外,陆地植物器官中的N:P比相对恒定是植物在地球上生存的重要适应机制,养分添加为验证这一假说提供了一种有效手段.为此,我们采用野外N素添加的方法,研究了内蒙古典型草原两种演替系列样地中(围封22年的样地A和围封2年的样地B)羊草(Leymus chinensis(Ttin.)Tzvel.)和黄囊苔草(Carex korshinskyi Kom)生物量和N:P化学计量学特征的变异.N素添加梯度分别为0、5、15、30、50、80 gNH4NO3·m-2·a-1.研究结果表明,在施肥第一年,两个物种的地上生物量和P含量均不受N素添加的影响;相关分析结果表明,在施肥第二年两种植物的N:P比不受氮素添加的影响;施肥可以显著提高羊草和黄囊苔草地上器官的含N量,P含量只是在第二年有显著增大的趋势;2001年,两块样地中羊草和黄囊苔草的氮磷含量在不同施肥处理下均呈极显著地正相关.这表明,样地A中黄囊苔草缺乏P,样地B中羊草缺乏N,施肥两年后,两个物种器官中的N、P含量具有显著的协同关系,从物种水平上验证了我们提出的假说.同时,两年的实验结果还表明,生态系统中不同物种对添加N素的响应不同,笼统地界定一个生态系统受某种元素的制约是不恰当的.  相似文献   

14.
This paper presents nitrogen and phosphorus budgets for spring and summer for the trophogenic (0–9 m) and tropholytic (9–27 m) zones of Lake Sammamish. The objective of constructing the budgets is to evaluate the efficiency of nutrient recycling and increase knowledge of the overall nutrient dynamics.The budgets reveal that uptake and solubilization are the dominant fluxes and that nutrient recycling is generally efficient, with the possible exception of early spring during the diatom bloom. This leads to greater reductions in the dissolved N and P pools in spring than summer. Sedimentation is greater in spring because of a pulse immediately following the diatom bloom.Solubilization of particulates is much less in the tropholytic zone than the trophogenic zone. This is due to slower decomposition rates there and to the efficiency of solubilization in the overlying trophogenic zone which results in a relatively small particulate influx. Turnover times for the N and P pools are therefore much faster in the trophogenic zone than in the tropholytic zone. In the trophogenic zone, however, the dissolved N pool turns over much more slowly than the dissolved P pool because of its larger size relative to algal growth requirements.Overall there is a net loss of N and P from the water column in spring primarily due to sedimentation and denitrification whilst in summer there is a small net gain because of sediment release and a slight excess of inflow over outflow.The work was supported by National Science Foundation grants DEB 74-20744, BMS 74-20744 and GB 36810F to the International Biological Program, Western Coniferous Biome (US/IBP) and grant R 008512 from the US Environmental Protection Agency. Contribution no. 373 by the Western Coniferous Biome.The work was supported by National Science Foundation grants DEB 74-20744, BMS 74-20744 and GB 36810F to the International Biological Program, Western Coniferous Biome (US/IBP) and grant R 008512 from the US Environmental Protection Agency. Contribution no. 373 by the Western Coniferous Biome.  相似文献   

15.
Changes in precipitation can influence soil water and nutrient availability, and thus affect plant nutrient conservation strategies. Better understanding of how nutrient conservation changes with variations in water availability is crucial for predicting the potential influence of global climate change on plant nutrient-use strategy. Here, green-leaf nitrogen (N) and phosphorus (P) concentrations, N- and P-resorption proficiency (the terminal N and P concentration in senescent leaves, NRP and PRP, respectively), and N- and P-resorption efficiency (the proportional N and P withdrawn from senescent leaves prior to abscission, NRE and PRE, respectively) of Leymus chinensis (Trin.) Tzveh, a typical perennial grass species in northern China, were examined along a water supply gradient to explore how plant nutrient conservation responds to water change. Increasing water supply at low levels (〈 9000 mL/year) increased NRP, PRP and PRE, but decreased green-leaf N concentration. It did not significantly affect green-leaf P concentration or NRE. By contrast, all N and P conservation indicators were not significantly influenced at high water supply levels (〉 9000 mL/year). These results indicated that changes in water availability at low levels could affect leaf-level nutrient characteristics, especially for the species in semiarid ecosystems. Therefore, global changes in precipitation may pose effects on plant nutrient economy, and thus on nutrient cycling in the plant-soil systems.  相似文献   

16.
Himken  M.  Lammel  J.  Neukirchen  D.  Czypionka-Krause  U.  Olfs  H.-W. 《Plant and Soil》1997,189(1):117-126
There is increasing interest in cultivation of Miscanthus as a source of renewable energy in Europe, but there is little information on its nutrient requirements. Our aim was to determine the nutrient requirement of an established Miscanthus crop through a detailed study of nutrient uptake and nutrient remobilization between plant parts during growth and senescence. Therefore dry matter of rhizomes and shoots as well as N, P, K and Mg concentration under three N fertilizer rates (0, 90, and 180 kg N ha-1) were measured in field trials in 1992/93 and at one rate of 100 kg N h-1 in 1994/95.Maximum aboveground biomass in an established Miscanthus crop ranged between 25-30 t dry matter ha-1 in the September of both trial years. Due to senescence and leaf fall there was a 30% loss in dry matter between September and harvest in March. N fertilization had no effect on crop yield at harvest. Concentrations of N, P, K and Mg in shoots were at a maximum at the beginning of the growing period in May and decreased thereafter while concentrations in rhizomes stayed fairly constant throughout the year and were not affected by N fertilization.Nutrient mobilization from rhizomes to shoots - defined as the maximum change in nutrient content in rhizomes from the beginning of the growth period measured in 1992/93 was 55 kg N ha-1, 8 kg P ha-1, 39 kg K ha-1 and 11 kg Mg ha-1. This is equivalent to 21 N, 36 P, 14 K and 27 Mg of the maximum nutrient content of the shoots. Nutrient remobilization from shoots to rhizomes defined as the increase in nutrient content of rhizomes between September and March measured in 1994/95 was 101 kg N ha-1, 9 kg P ha-1, 81 kg K ha-1 and 8 kg Mg ha-1 equivalent to 46 N, 50 P, 30 K and 27 Mg of nutrient content of shoots in September. Results showed that nutrient remobilization within the plant needs to be considered when calculating nutrient balances and fertilizer recommendations.  相似文献   

17.
Nutrient cycling within three Pinus sylvestris stands was studied in eastern Finland. The aim of the study was to determine annual fluxes and distribution of N, P, K, Ca, Mg, Zn, Fe, B, and Al in the research stands. Special emphasis was put on determining the importance of different fluxes, especially the internal cycle within the trees in satisfying the tree nutrient requirements for biomass production. The following nutrient fluxes were included, input; free precipitation and throughfall, output; percolation through soil profile, biological cycle; nutrient uptake from soil, retranslocation within trees, return to soil in litterfall, release by litter decomposition. The distribution of nutrients was determined in above- and belowground tree compartments, in ground and field vegetation, and in soil.The nitrogen use efficiencies were 181, 211 and 191 g of tree aboveground dry matter produced per g of N supplied by uptake and retranslocation in the sapling, pole stage and mature stands, respectively. Field vegetation was more efficient in nitrogen use than trees. Stand belowground/aboveground and fine root/coarse root biomass ratios decreased with tree age. With only slightly higher fine root biomass, almost three times more nitrogen had to be taken-up from soil for biomass production in the mature stand than in the sapling stand.The annual input-output balances of most nutrients were positive; throughfall contained more nutrients than was lost in mineral soil leachate. The sulphate flux contributed to the leaching of cations, especially magnesium, from soil in the mature stand.Retranslocation supplied 17–42% of the annual N, P and K requirements for tree aboveground biomass production. Precipitation and throughfall were important in transferring K and Mg, and also N in the sapling stand. Litterfall was an important pathway for N, Ca, Mg and micro nutrients, especially in the oldest stands.  相似文献   

18.
The structure and function of Shisham (Dalbergia sissoo Roxb.) forests were investigated in relation to nutrient dynamics in 5- to 15-year-old stands growing in central Himalaya. Nutrient concentrations and storage in different layers of vegetation were in the order: tree > shrub > herb. Forest soil, litter and vegetation accounted for 80.1-91.9, 1.0-1.5 and 7.0-18.4%, respectively, of the total nutrients in the system. There were considerable reductions (trees 32.8-43.1; shrubs 26.2-32.4; and herbs 18-8-22-2%) in nutrient concentrations of leaves during senescence. Nutrient uptake by the vegetation as a whole and also by the different components, with and without adjustment for internal recycling, was investigated. Annual transfer of litter nutrients to the soil from vegetation was 74.8-108.4 kg ha(-1) year(-1) N, 56.8-4 kg ha(-1) year(-1) P and 38.7-46.9 kg ha(-1) year(-1) K. Turnover rate and time for different nutrients ranged between 56 and 66 % year(-1) and 1.5 and 1.8 years, respectively. The turnover rate of litter indicates that over 50% of nutrients in litter on the forest floor are released, which ultimately enhances the productivity of the forest stand. The nutrient use efficiency in Shisham forests ranged from 136 to 143 kg ha(-1) year(-1) for N, 1,441 to 1,570 kg ha(-1) year(-1) for P and 305 to 311 kg ha(-1) year(-1) for K. Compared with natural oak forest (265 kg ha(-1) year(-1) and an exotic eucalypt plantation (18 kg ha(-1) year(-1), a higher proportion of nutrients was retranslocated in Shisham forests, largely because of higher leaf tissue nutrient concentrations. This indicates a lower nutrient use efficiency of Shisham compared with eucalypt and oak. Compartment models for nutrient dynamics have been developed to represent the distribution of nutrients pools and net annual fluxes within the system.  相似文献   

19.
在杉木林和马尾松林中雨水的养分淋溶作用   总被引:41,自引:8,他引:41  
马雪华 《生态学报》1989,9(1):15-20
本试验地是在杉木林和马尾松林中,主要对降雨和径流水中所含各种养分物质进行测定。结果表明:降雨的养分含量与降雨量存在着半对数函数关系。降雨输入林地的养分量显著地大于径流输出的养分量。林内雨和树干茎流淋溶的养分量占养分还原总量的48—53%。林内雨和树干淋溶的K、Mg、N养分物质量超过凋落物归还养分量。  相似文献   

20.
Ideal nutrient productivities and nutrient proportions in plant growth   总被引:6,自引:2,他引:4  
Abstract I propose that one single formulation can be applied to relate growth and content of several nutrients, including the most important macronutrients, of most plant species. The plant growth rate is proportional to the nutrient content minus a given minimal concentration of the nutrient in minimum. The proportionality factor, the nutrient productivity, and the minimum concentration are species specific properties. The nutrient productivity formulation is shown to apply for very different plant species and for different nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号