首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
To study the effect of post-treatment with 6-Dimethylaminopurine (6-DMAP) on oocyte activation and development, mouse oocytes collected at different times post human chorion gonadotropin (hCG) injection were incubated in 6-DMAP-containing Chatot-Ziomek-Bavister (CZB) medium for different periods after ethanol exposure, and activation and development were observed. When oocytes were cultured in 6-DMAP without prior ethanol exposure, the highest activation rate was only 40%. Incubation in 6-DMAP for 6 h following ethanol exposure significantly (P < 0.05) increased the activation rate in oocytes recovered 15 and 18 h post hCG, but this effect was not significant in the 21 h oocytes. When oocytes were incubated in 6-DMAP for 1 h at different time points after ethanol, a 6-DMAP susceptible temporal window was found to be located from the second to the fifth h in the 18 h oocytes and from the fourth to the fifth h in the 15 h oocytes, and within the window, the duration of 6-DMAP incubation can be reduced to 0.5 h with more than 80% activation. With the 13 h oocytes, however, 6-DMAP-incubation can only be shortened to 3 h and no specific temporal window was identified. Oocytes that were incubated in 6-DMAP for 1 or 2 h after ethanol exposure developed to morula/blastocyst stages at significantly (P < 0.05) higher rates than those incubated in 6-DMAP for 6 h. Our results suggested that (i) long duration of 6-DMAP incubation impaired the development of mouse parthenogenotes; (ii) the effect of 6-DMAP alone was limited without prior ethanol exposure; (iii) the egg age affected both the timing of 6-DMAP susceptibility and the duration of exposure required to obtain a maximal activating effect; (iv) the most effective activating protocols varied for oocytes of different ages.  相似文献   

2.
Starfish oocytes can be fertilized after germinal vesicle breakdown (GVBD) and artificial parthenogenesis can be induced by activating the oocytes after GVBD (post-GVBD activation). In the present study, parthenogenotes were obtained by the activation of immature oocytes with caffeine before treatment with 1-methyladenine (1-MeAde) to induce oocyte maturation. Most of the caffeine-treated eggs developed as tetraploids, as parthenogenotes produced by the post-GVBD activation. The parthenogenotes were derived only from eggs that failed to extrude polar bodies, mostly from eggs failing to extrude a second polar body. Eggs derived from immature oocytes activated by A23187, treated with 1-MeAde and post-treated with cytochalasin B failed to extrude polar bodies, and eventually developed into parthenogenetic embryos. These results indicate that the present parthenogenesis mechanism shares the same characteristics as that achieved by post-GVBD activation in the suppression of polar body formation as a key means for successful starfish parthenogenesis.  相似文献   

3.
The energy metabolism of preimplantation embryos can be used to predict viability and postimplantation development. Although preimplantation development and mean blastocyst cell numbers of goat in vitro-fertilized (IVF) embryos and chemically activated parthenogenotes are comparable, mammalian parthenogenotes are not viable, with most dying shortly after implantation. The objective of this study was to compare glucose and pyruvate metabolism of IVF goat blastocysts with that of parthenogenetic blastocysts developing from chemically activated oocytes. Embryos derived from IVF and parthenogenotes produced by exposing oocytes to either ionomycin or ethanol followed by 6-dimethylaminopurine (6-DMAP) were cultured in G1.2/G2.2 sequential culture media. Metabolism was determined for individual blastocysts using [5-3H]glucose and [2-14C]pyruvate to determine glycolytic and Kreb's cycle activity, respectively. Data were analyzed by ANOVA. A significantly higher percentage of activated oocytes underwent cleavage and developed to the blastocyst stage compared to IVF oocytes (p < 0.05). There was no significant difference in glucose or pyruvate metabolism between IVF and parthenogenetically activated blastocysts. Mean glucose metabolism through glycolysis was 154.9 +/- 29.1, 130.3 +/- 17.1, and 129 +/- 16.5 pmol/embryo/3 h for IVF, ethanol-activated, and ionomycin-activated blastocysts, respectively. Mean pyruvate metabolism through the Kreb's cycle was 28.1 +/- 8.0, 15.8 +/- 4.2, and 24.4 +/- 4.4 in pmol/embryo/3 h for IVF, ethanol-activated, and ionomycin-activated blastocysts, respectively. Our results suggest that known differences in postimplantation development observed in IVF versus parthenogenetic embryos cannot be attributed to differences in pyruvate or glucose metabolism in the preimplantation blastocysts. Thus, these activation protocols result in embryos capable of appropriate regulation of key metabolic enzymes.  相似文献   

4.
Activity of the sperm-derived oocyte-activating factor persists in zygotes and can be detected by a fusion with metaphase II (MII) oocytes leading to the activation of the hybrids. We have shown, that in the great majority of oocytes inseminated 1-2 hr after germinal vesicle breakdown (GVBD) the sperm-derived activating ability was eliminated. Only few hybrids produced by fusion of MII oocytes with oocytes inseminated during in vitro maturation (M x IVM-P + sperm hybrids) underwent activation, whereas almost all of MII oocyte x zygote hybrids entered interphase. However, frequency of activation of M x IVM-P + sperm hybrids was higher than that of control hybrids, which were obtained by fusion of MII oocytes with oocytes uninseminated during in vitro maturation. Although the difference was not statistically significant, it suggested that in a certain number of oocytes inseminated after GVBD the sperm-derived oocyte-activating factor remained partially active. This was confirmed by our observation that several oocytes, which were inseminated during in vitro maturation and managed to accomplish MII, underwent activation and formed pronuclei when examined 25-26 hr after the beginning of maturation. We have also demonstrated that parthenogenotes, could acquire the sperm-derived activity, as a consequence of sperm injection. MII oocytes were fused with parthenogenotes inseminated by ICSI and all hybrids underwent activation. This result indicated that the ability to induce activation in hybrid, was sperm-derived.  相似文献   

5.
In this study, we compared the developmental capacity of bovine haploid and diploid androgenetic and parthenogenetic embryos obtained by different methods. Androgenetic embryos were produced by piezo-intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF) of enucleated oocytes with or without subsequent pronuclear transfer from one haploid zygote to another. Parthenogenetic embryos were obtained by activation of matured oocytes by ionomycin combined with cycloheximide or 6-dimethylaminopurine (DMAP) treatment. Only few cleaved androgenetic haploid embryos were able to compact (2.7%) and to form blastocysts (1.8%), while significantly more haploid parthenogenotes underwent compaction (24-37%) and a minority developed to blastocysts at different rates, depending on the activation procedure (cycloheximide 3%, 6-DMAP 14.5%). By contrast, development to blastocyst of diploid androgenotes, cloned androgenetic embryos, and parthenogenotes (31%, 39%, and 43%, respectively) was similar to IVF control embryos (35%). Cell number on Day 7 was higher for IVF blastocysts and decreased in consecutive order in diploid androgenotes, diploid parthenogenotes, and haploid uniparental embryos. Following transfer of diploid androgenetic embryos, a pregnancy was established and maintained up to Day 28.  相似文献   

6.
Starfish oocytes artificially activated by a calcium ionophore will develop normally if the formation of polar bodies is suppressed. In the present paper, schedules of the DNA replication period (S phase) of these parthenogenotes were explicitly timed using 5-bromo-2'-deoxyuridine (BrdU) and anti-BrdU monoclonal antibody. Their schedule of S phase was identical to that of fertilized eggs. Consequently, an S phase regulation system is triggered even in parthenogenotes raised by dual treatment of egg activation and polar body suppression. The S phase schedule of parthenogenotes confirms the temporal pattern of chromosome duplication, observed by other researchers, leading to tetraploid parthenogenotes. The S phase determination also provides a basis for argument concerning the number of centrioles participating in parthenogenetic development. If polar body formation of activated eggs was not suppressed, the first S phase was normal, but the second S phase did not recur on time. A rigidly regulated system of DNA replication cycle, which should be an essential prerequisite for parthenogenesis, thus requires the content of polar bodies.  相似文献   

7.
Activation of bovine oocytes by experimental procedures that closely mimic normal fertilization is essential both for intracytoplasmic sperm injection and for nuclear transfer (NT). Therefore, with the goal of producing haploid activated oocytes, we evaluated whether butyrolactone I and bohemine, either alone or in combination with ionomycin, are able to activate young matured mammalian oocytes. Furthermore, the effect on the patterns of DNA synthesis after pronuclear formation as well as changes in histone H1 kinase and MAP kinase activities during the process of activation were studied. Our results with bohemine show that the specific inhibition of cyclin-dependent kinases (CDKs) in metaphase II bovine oocytes induces parthenogenetic activation in a dose dependent manner (25, 50, and 100 microM, respectively), either alone (3%, 30%, and 50%) or in combination with ionomycin (30%, 70%, and 87.5%). The effect of two activation protocols on nuclear remodeling, DNA synthesis during the first cell cycle, chromosome segregation after first mitosis, and development to blastocyst of embryos produced by somatic nuclear transfer were studied. Pronuclear formation was significantly higher when activation lasted 5 h compared to 3 h for both ethanol-cycloheximide and ionomycin-bohemine treatment. Initiation of DNA synthesis was delayed in ethanol-cycloheximide group, however, after 12-h labeling 100% of embryos synthesized DNA in both groups. Analysis of two-cell embryos with DNA probes for chromosome 6, 7, and 15 by fluorescence in situ hybridization showed that at least 50% of NT embryos were of normal ploidy, independent of the activation protocol.  相似文献   

8.
Mouse oocytes with cumulus cells intact were parthenogenetically activated following release from the oviduct into calcium-free medium. The proportion of activated oocytes increased with post ovulatory age both for oocytes initially exposed to calcium-free and calcium-containing medium (control). Apart from oocytes released shortly after ovulation (approximately 1 h) when less than 1% of the oocytes from treated and control were activated, activation was always higher in oocytes incubated in calcium-free medium (p less than 0.001). The omission of magnesium from the medium had no effect on the activation response of oocytes obtained approximately 3 h after ovulation but its absence did increase the activation rate of oocytes of later post ovulatory age (approximately 9 h after ovulation) although it was still lower than that obtained with media devoid of calcium. When the extracellular calcium was replaced by other divalent cations (strontium, barium and manganese) high rates of activation were obtained even at post ovulatory times which produced relatively low rates of activation in calcium-free medium alone. Similar results were obtained when hamster oocytes were exposed to all the aforementioned treatments. It is concluded that calcium plays an essential role in the activation of the mammalian oocyte but the mechanism of its action remains obscure. Further development of oocytes activated by calcium-free treatment was limited and was similar to that of oocytes activated in other ways.  相似文献   

9.
It has long been known that several embryos are needed to establish and maintain pregnancy during early gestation in pigs. In this study, we assessed whether co-transfer of parthenogenotes with a single embryo was sufficient to maintain development of the embryo. Embryos were recovered at morula and early blastocyst stages from gilts that had been artificially inseminated. Parthenogenotes were produced from oocytes matured in vitro, activated by electrical stimulation, and then cultured for 110h. Those that had developed to morula- or blastocyst-like stages at 110h post-activation were transferred to recipient pigs either with or without morula or blastocyst stage embryos. Parthenogenotes that were transferred to recipients in the absence of embryos were viable up to 30 days post-activation and formed limb-buds; at 40 days, however, all were dead or degenerate. Among pigs that received both parthenogenotes and a single embryo, seven of nine (77.8%) delivered a normal piglet at full-term. This study therefore demonstrates that parthenogenotes can be used in place of embryos to establish pregnancy and promote development of a single co-transferred embryo. This method may be applied to rescue high value porcine embryos that are difficult to produce, such as transgenic cloned embryos, or for embryos frozen as a genetic resource.  相似文献   

10.
Bovine oocytes matured in vitro for 26 hours were electrically stimulated 1) by a single pulse (Treatment A); 2) by 3 pulses 30 minutes apart (Treatment B); 3) by a single pulse followed by 5 minutes of incubation in the stimulation medium (Treatment C); or 4) by a single pulse at 27 hours of maturation (Treatment D). The oocytes were then cultured for up to 8 days to assess parthenogenetic activation and development. Each electrical stimulation consisted of a 60-mus square wave pulse of 2.5 or 3.6 kV/cm. Treatment A was less effective than the other treatments (P<0.05), activating 47 or 59% of oocytes at 2.5 or 3.6 kV/cm, respectively. However, there were no differences due to voltage nor among the other treatments, which activated 64 to 78% of the oocytes. The cleavage rate, 28 to 38%, was not affected by the activation treatment, but development to the 8-cell stage or beyond was greater after activation with the higher voltage. While the numbers of morulae or blastocysts resulting from any given treatment were too small to support meaningful statistical comparison, the results indicate that bovine parthenogenotes produced in vitro are capable of development to the blastocyst stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号