首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article raises the complex issue of improving plant nutritional value through metabolic engineering and the potential of using RNAi and micro RNA technologies to overcome this complexity, focusing on a few key examples. It also highlights current knowledge of RNAi and microRNA functions and discusses recent progress in the development of new RNAi vectors and their applications. RNA interference (RNAi) and microRNA (miRNA) are recent breakthrough discoveries in the life sciences recognized by the 2006 Nobel Prize in Physiology or Medicine. The importance of these discoveries relates not only to elucidating the fundamental regulatory aspects of gene expression, but also to the tremendous potential of their applications in plants and animals. Here, we review recent applications of RNAi and microRNA for improving the nutritional value of plants, discuss applications of metabolomics technologies in genetic engineering, and provide an update on the related RNAi and microRNA technologies.  相似文献   

2.
RNA干扰(RNA interference,RNAi)是一种高效的、序列特异的基因沉默现象。本文介绍了RNA干扰的发现及其干扰机制,阐明RNA干扰可在发现代谢途径中的新基因并验证其功能、改善植物营养价值、提高植物抗性、创造新种质等方面发挥重要作用。  相似文献   

3.
Since its discovery 10 years ago, RNA interference (RNAi) has evolved from a research tool into a powerful method for altering the phenotype of cells and whole organisms. Its near universal applicability coupled with its pinpoint accuracy for suppressing target proteins has altered the landscape of many fields. While there is considerable intellectual investment in therapeutics, its potential extends far beyond. In this review, we explore some of these emerging applications--metabolic engineering for enhancing recombinant protein production in both insect and mammalian cell systems, antisense technologies in bacteria as next generation antibiotics, and RNAi in plant biotechnology for improving productivity and nutritional value.  相似文献   

4.
RNA interference (RNAi) has emerged as a powerful genetic tool for scientific research over the past several years. It has been utilized not only in fundamental research for the assessment of gene function, but also in various fields of applied research, such as human and veterinary medicine and agriculture. In plants, RNAi strategies have the potential to allow manipulation of various aspects of food quality and nutritional content. In addition, the demonstration that agricultural pests, such as insects and nematodes, can be killed by exogenously supplied RNAi targeting their essential genes has raised the possibility that plant predation can be controlled by lethal RNAi signals generated in planta. Indeed, recent evidence argues that this strategy, called host‐induced gene silencing (HIGS), is effective against sucking insects and nematodes; it also has been shown to compromise the growth and development of pathogenic fungi, as well as bacteria and viruses, on their plant hosts. Here, we review recent studies that reveal the enormous potential RNAi strategies hold not only for improving the nutritive value and safety of the food supply, but also for providing an environmentally friendly mechanism for plant protection.  相似文献   

5.
转基因改良植物的营养价值   总被引:8,自引:0,他引:8  
植物是人类所需大部分营养物质的主要来源,植物产品的营养品质直接影响着人类的健康。分子克隆和遗传转化技术的发展为改良植物的营养价值开辟了新途径。植物营养价值的转基因改良已在改进作物蛋白质含量及品质、淀粉和油脂成分及品质,提高抗氧化物水平(如类胡萝卜素、类黄酮等),培育具有医疗效应的营养品质等方面取得了可喜的进展。迄今,已获得许多营养品质改良的转基因作物品系。这些转基因作物经过一系列的安全性及对人类营养有效性的验证后, 可直接食用,或应用于开发具有特殊营养品质和保健作用的“功能食品”。我们实验室开展了大豆油脂改良研究,构建了能特异抑制大豆FAD2-1基因表达的锌指转录因子,获得了油酸含量显著提高的转基因材料。初步结果表明锌指转录因子的分子设计是改良植物油脂代谢的一条可行途径,亦可用于调控植物其它内源靶基因的表达。  相似文献   

6.
7.
Replacement of fish meal with plant proteins in aquaculture diets presents several problems. Firstly, aquaculture diets, particularly diets for carnivorous fish species, are nutrient dense and may contain up to 450 g crude protein (CP)/kg. Such diets preclude the use of ingredients with only moderate CP content, such as pulses including peas and faba beans or oilseed meals including canola/rapeseed meal and flax. Secondly, virtually all crops contain heat-labile and heat-stable secondary compounds including protease inhibitors, tannins, lectins, phytate, dietary fibre and starch. Removal of heat-labile secondary compounds may be accomplished by extrusion or other heat treatment. However, elimination of heat-stable secondary compounds, and increasing the nutrient concentration of diets, requires fractionation of crops. Fractionation technologies range from low technology processes such as dehulling to medium technologies such as air classification to sophisticated technologies such as aqueous and solvent protein purification. Studies on the nutritional value of processed plant proteins in various fish species have consistently shown improved digestibility and growth compared to feeding unprocessed ingredients. This review examines effects of processing technologies on nutritional properties of soybean meal, canola meal, peas, lupins and flax in aquaculture diets.  相似文献   

8.
RNA interference: concept to reality in crop improvement   总被引:2,自引:0,他引:2  
  相似文献   

9.
结构基因组学和功能基因组学的发展使特定植物基因组和转录组序列的获取更为方便和快捷。随之而来的是对各种基因和调控序列的功能注释,探索植物生长和发育的遗传机理。表达和调控表达是遗传物质的自身语言和动态属性,因此通过植物细胞内表达来分析目标基因和序列的表达和调控行为是功能分析的主要立足点。除创造转基因植株外,近几年来植物细胞瞬间表达系统得到了广泛的使用,与基因重排、病毒诱导基因沉默和RNA干扰等新兴技术的结合使其在植物功能基因组研究中扮演了越来越重要的角色。  相似文献   

10.
The therapeutic potential of RNA interference   总被引:16,自引:0,他引:16  
Uprichard SL 《FEBS letters》2005,579(26):5996-6007
In recent years, we have witnessed the discovery of a new mechanism of gene regulation called RNA interference (RNAi), which has revitalized interest in the development of nucleic acid-based technologies for therapeutic gene suppression. This review focuses on the potential therapeutic use of RNAi, discussing the theoretical advantages of RNAi-based therapeutics over previous technologies as well as the challenges involved in developing RNAi for clinical use. Also reviewed, are the in vivo proof-of principle experiments that provide the preclinical justification for the continued development of RNAi-based therapeutics.  相似文献   

11.
12.
RNA干扰(RNA interference,RNAi)是指由双链RNA(double-stranded RNA,dsRNA)诱发同源mRNA高效特异性降解的现象,在真核生物中普遍存在且进化保守。RNAi技术作为21世纪初的重大科学成就,目前被广泛应用于疾病防治、基因功能研究、植物改良育种等领域。RNAi技术常与转基因技术结合用于植物改良育种,通过不同的载体设计或作用途径来研发满足生产需要的农业生物技术产品。为了明确现阶段基于RNAi技术的转基因植物育种技术进展,综述了RNAi现象的发现和作用机制、转基因载体设计、小RNA(small RNA,sRNA)的递送方式等方面的研究进展,并阐述了基于RNAi技术的转基因植物的研究实例和商业化情况,以期为相关研究提供参考,从而发挥RNAi技术的最大应用价值,使之服务于新时代的农业发展。  相似文献   

13.
Small RNAs recognize, bind, and regulate other complementary cellular RNAs. The introduction of small RNAs to eukaryotic cells frequently results in unintended silencing of related, but not identical, RNAs: a process termed off-target gene silencing. Off-target gene silencing is one of the major concerns during the application of small RNA-based technologies for gene discovery and the treatment of human disease. Off-target gene silencing is commonly thought to be due to inherent biochemical limitations of the RNAi machinery. Here we show that following the introduction of exogenous sources of double-stranded RNA, the nuclear RNAi pathway, but not its cytoplasmic counterparts, is the primary source of off-target silencing in Caenorhabditis elegans. In addition, we show that during the normal course of growth and development the nuclear RNAi pathway regulates repetitive gene families. Therefore, we speculate that RNAi off-target effects might not be “mistakes” but rather an intentional and genetically programmed aspect of small RNA-mediated gene silencing, which might allow small RNAs to silence rapidly evolving parasitic nucleic acids. Finally, reducing off-target effects by manipulating the nuclear RNAi pathway in vivo might improve the efficacy of small RNA-based technologies.  相似文献   

14.
Davidson BL  Boudreau RL 《Neuron》2007,53(6):781-788
RNA interference (RNAi), a mediator of gene silencing, has swiftly become one of the most exciting and applicable biological discoveries. There has been rapid progress in identifying RNAi pathway components and elucidating the mechanisms of microRNA (miRNA) biogenesis and gene suppression. As a result, RNAi technologies have been successfully employed in a variety of systems as biological tools, and studies are underway to test the therapeutic utility of RNAi. In the span of several years, significant advances in the delivery of inhibitory RNAs in the nervous system have been made. We have glimpses into how endogenous miRNAs interface with neuronal development and function; in addition, RNAi has shown therapeutic efficacy in several mouse models of human neurological conditions. In this review, we summarize the current state-of-the-art of RNAi and its utility to neuroscientists.  相似文献   

15.
Recently, United States Food and Drug Administration (FDA) and European Commission (EC) approved Alnylam Pharmaceuticals' RNA interference (RNAi) therapeutic, ONPATTRO? (Patisiran), for the treatment of the polyneuropathy of hereditary transthyretin-mediated (hATTR) amyloidosis in adults. This is the first RNAi therapeutic all over the world, as well as the first FDA-approved treatment for this indication. As a milestone event in RNAi pharmaceutical industry, it means, for the first time, people have broken through all development processes for RNAi drugs from research to clinic. With this achievement, RNAi approval may soar in the coming years. In this paper, we introduce the basic information of ONPATTRO and the properties of RNAi and nucleic acid therapeutics, update the clinical and preclinical development activities, review its complicated development history, summarize the key technologies of RNAi at early stage, and discuss the latest advances in delivery and modification technologies. It provides a comprehensive view and biotechnological insights of RNAi therapy for the broader audiences.  相似文献   

16.
The discovery of the phenomenon of RNA interference (RNAi) and its existence in mammals quickly suggested a great potential for use in disease therapy. Rapid advances have been made in the development of RNAi-based technologies and promising results have been obtained from studies on mammalian cell culture systems and animal in vivo models. However, the progress in our understanding of the RNAi pathway and the related function of microRNAs (miRNAs) have also raised concerns regarding various types of side effects that may restrict the use of this technology in human therapy. At the same time, our new knowledge about the functional roles of miRNAs as regulators of many cellular processes, including proliferation, differentiation, development, and neuronal function, is revolutionizing cell biology and will have a major impact on medical research. In this review, we focus on the discoveries that have been made in animal models and how this insight can be translated to human medicine and disease therapy. In this connection, we will particularly discuss the challenges associated with the efforts to develop RNAi-based therapeutics.  相似文献   

17.
RNAi suppressors encoded by pathogenic human viruses   总被引:3,自引:0,他引:3  
RNA silencing or RNAi interference (RNAi) serves as an innate antiviral mechanism in plants, fungi and animals. Human viruses, like plant viruses, encode suppressor proteins or RNAs that block or modulate the RNAi pathway. This review summarizes the mechanisms by which pathogenic human viruses affect the RNAi pathway. Furthermore, some applications of the viral RNAi suppressor functions and the consequences for antiviral therapeutic strategies that are based on RNAi are discussed.  相似文献   

18.
19.
傅淑  刘昭霞  陈金芝  孙庚晓  孙翠英  杨广 《昆虫学报》2019,62(12):1448-1468
摘要: 应用植物介导的昆虫RNAi进行害虫防治近10年来受到了广泛的关注,其作用机理包括两个阶段,首先是害虫靶标基因dsRNA在植物体内的表达、运输和贮存,然后是害虫取食该植物后,dsRNA特异性抑制害虫体内靶标基因的表达。目前,植物介导的昆虫RNAi主要针对鳞翅目、鞘翅目和同翅目害虫,可以引起害虫生长发育的异常,导致死亡/繁殖力下降,甚至影响到其子代的生长。影响植物介导昆虫RNAi效率的因素主要包括害虫靶标基因的选择、dsRNA靶定位点及长度、植物表达dsRNA载体的结构和转基因植物的遗传转化方式等。植物介导昆虫RNAi防治害虫的策略也面临着潜在的安全性问题,如转基因植物安全性和RNAi潜在脱靶性等。随着植物介导昆虫RNAi技术的成熟,该方法有望成为害虫防治的新策略。  相似文献   

20.
Referee: Dr. T.J. Higgins, Chief Research Scientist, CSIRO, Divistion of Plant Industry, Clunies Ross Street, Box 1600, Canberra, 2601, Australia Recent advances in gene isolation, plant transformation, and genetic engineering are being used extensively to alter metabolic pathways in plants by tailormade modifications to single or multiple genes. Many of these modifications are directed toward increasing the nutritional value of plant-derived foods and feeds. These approaches are based on rapidly growing basic knowledge, understanding, and predictions of metabolic fluxes and networks. Some of the predictions appear to be accurate, while others are not, reflecting the fact that plant metabolism is more complex than we presently understand. Tailor-made modifications of plant metabolism has so far been directed into improving the levels of primary metabolites that are essential for growth and development of humans and their livestock. Yet, the list of improved metabolites is expected to grow tremendously after new discoveries in nutritional, medical, and health sciences. Despite our extensive knowledge of metabolic networks, many of the genes encoding enzymes, particularly those involved in secondary metabolism, are still unknown. These genes are being discovered at an accelerated rate by recent advances in genetic and genomics approaches. In the present review, we discuss examples in which the nutritional and health values of plant-derived foods and feeds were improved by metabolic engineering. These include modifications of the levels of several essential amino acids, lipids, fatty acids, minerals, nutraceuticals, antinutritional compounds, and aromas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号