首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
高等植物对氨基酸态氮的吸收与利用研究进展   总被引:12,自引:0,他引:12  
植物能够在不经矿化的情况下直接吸收利用环境中的分子态氨基酸.氨基酸作为植物和微生物的优良碳源和氮源,二者对其吸收存在着激烈竞争,氨基酸态氮来源广、半衰期短的特点使其具有巨大的流通量.运用氮同位素示踪方法研究氨基酸对植物的氮营养贡献一直是国内外学者研究的热点,对揭示土壤肥力本质具有重要意义.本文对不同生态系统中氨基酸形态特征、代谢机制及营养贡献进行了简要综述,分析了氨基酸态氮在植物-土壤-微生物系统中的循环机制及生物有效性等方面研究现状和发展趋势,并提出了土壤氨基酸生物有效性环境调控、氨基酸碳-氮代谢及提高农田生态系统有机氮管理等待解决的科学问题.  相似文献   

2.
原始森林土壤NH4+/NO3-生境特征与某些针叶树种的适应性   总被引:8,自引:0,他引:8  
崔晓阳  宋金凤 《生态学报》2005,25(11):3082-3092
在陆地生态系统中,生存地段的土壤养分环境构成了植物的“营养生境”。植物在长期进化过程中往往产生对原生营养生境的生态适应,其中对NH4 和NO3-两种无机氮源的吸收、利用特性便可能是这种适应的一个重要方面。由于硝化抑制(限制)或微生物对NO3-的强烈吸收、固持作用,酸性、弱酸性的原始森林土壤中NH4 含量大都远高于NO3-,从而形成了以NH4 占绝对优势的“氮营养生境”。很多针叶树种(尤其是演替晚期阶段占优势者)对其长期所处的NH4 优势生境产生了充分适应,以致对非还原态氮(NO3-)的吸收、利用能力严重下降。这些针叶树往往表现出典型的“喜铵性”,而在NO3-优势环境中则会引起氮代谢失调和生长下降。从氮同化酶、高耐铵性、根对NH4 和NO3-的相对吸收能力及NO3-吸收的反馈控制、养分关系与养分平衡、根部碳流失、光合作用及耐荫性等多方面阐述了喜铵针叶树适应的生理生化机制。这种生态适应可能是顶极森林群落维持长期稳定的重要机制之一,而采伐干扰后NO3-明显增加的立地条件则可能会导致喜铵的“原优势针叶树种”更新困难。在温带退化森林生态系统恢复与重建过程中,顶极针叶树种对NH4 营养生境的固有适应性是必须充分考虑的问题。  相似文献   

3.
全球范围内的氮沉降增加改变了生态系统氮(N)素循环过程,由此带来的生态学效应已成为当前研究的热点。以昆仑山高山草地生态系统2种优势植物黄花棘豆(Oxytropis ochrocephala)和针茅(Stipa capillata)为研究对象,开展人工氮肥添加试验,研究土壤-微生物-植物系统各组分生态化学计量特征对氮添加的响应特征。结果表明:①氮添加显著提高了土壤NH4^+-N和土壤NO3^--N含量(P<0.05),土壤全N、全磷(P)、速效P含量没有明显变化。②氮添加条件下针茅叶片N含量增加,P含量降低,而黄花棘豆N和P含量无明显变化。③土壤微生物量碳(MBC)和微生物量氮(MBN)随着施氮量的增加呈现出先增加后降低的趋势,当施氮量为6N·m^-2·y^-1时呈现出最高值。土壤NH4+-N含量与土壤微生物量N含量有显著的正相关关系(P<0.01)。综合分析表明,短期氮添加有利于土壤养分和微生物量的积累,促进植物和微生物养分吸收利用。2种优势植物的生态化学计量特征对氮沉降的响应不同,过量的氮输入将会造成植物生长受到P限制,氮沉降会改变昆仑山高山草地生态系统的生物地球化学循环过程。  相似文献   

4.
植物吸收利用有机氮营养研究进展   总被引:4,自引:0,他引:4  
植物矿质营养学问世以后,人们一直认为无机氮是植物吸收氮素的主要形态.随着研究手段的改进和研究内容的不断深入,现已证实许多没有菌根的维管植物都可以直接吸收可溶性有机氮,特别是小分子的氨基酸.由此引起了人们对植物有机营养、植物营养方式多样化问题的重视.研究表明:氨基酸可以通过多种方式释放到土壤溶液中,土壤中的氨基酸主要来源于微生物、动植物及其代谢产物等.土壤氨基酸含量受土壤温湿度、所施的有机肥料、生长的植物种类及其生长发育时期的影响.植物对氨基酸的吸收是一个主动吸收过程,受载体调节,并与能量状况有关,同时受介质中pH和温度的影响.但是有关植物吸收氨基酸的机理及其生态过程还需进行深入的研究.  相似文献   

5.
王春阳  周建斌  董燕婕  陈兴丽  李婧 《生态学报》2010,30(24):7092-7100
黄土高原丘陵沟壑区进行的以退耕还林还草为主的生态环境建设,使得进入土壤生态系统有机物的种类及数量发生变化,其对土壤微生物量碳、氮的影响是值得关注的问题。采用室内培养法研究了采自该区6种不同植物凋落物(碳氮比在15.1-50.7之间)及其与不同形态氮素(NH+4-N及NO-3-N)配合对土壤微生物量碳、氮及矿质态氮含量的影响。结果表明,加入不同凋落物均显著提高了土壤微生物量碳、氮含量,其中加入柠条、沙打旺等碳氮比低的凋落物在培养的一段时期内土壤微生物量碳、氮均高于碳氮比高的凋落物(刺槐、沙柳和长芒草)。在加入凋落物再施用NH+4或NO-3,也提高了土壤微生物量碳、氮含量,其中铵态氮处理土壤微生物量碳、氮含量的增加达显著水平,说明微生物更易利用铵态氮。加入C/N高的凋落物后土壤中的矿质氮发生固持,矿质态氮固持量与凋落物的C/N比呈显著的正相关关系。建议在黄土高原丘陵沟壑区植被恢复过程中,有必要考虑不同植物凋落物的碳、氮养分含量及转化特性,以协调土壤碳、氮转化过程。  相似文献   

6.
土壤可溶性有机氮的研究进展   总被引:2,自引:0,他引:2  
可溶性有机氮(SON)是土壤氮素组成中最活跃的组分之一,在陆地生态系统氮循环及养分平衡方面起着重要作用。研究证明,SON既能通过矿化作用转化为矿质氮,也能被植物直接吸收利用。另外,SON流失可能会造成水生生态系统的富营养化,并加剧土壤系统温室气体N_2O的排放。因此,土壤SON受到国内外多学科的广泛关注。本文概述了SON的来源、组成、提取、测试、生态功能及其流失的环境效应,并指出未来有待深入研究的问题,以期为植物吸收利用氮素及生态系统氮循环的研究提供参考依据。  相似文献   

7.
运用^15N稳定性同位素示踪技术,对高寒草甸植物和土壤微生物固持沉降氮的能力及沉降氮在小嵩草(Kobresia pygaea)草甸中的运移规律进行了研究。施肥2周后,NO3^--^15N和NH4^ -^15N的总恢复率分别为73.5%和78%。无论是NO3^--^15N,还是NH4^ -^15N植物所固持的^15N总是比土壤有机质或者是土壤微生物固持的多。4周后,70.6%的NO3^--^15N和57.4%的NH4^ -^15N被固持在土壤和植物中。其中,土壤微生物所固持。在施肥6周和8周后,NO3^--^15N的总恢复率分别为58.4%和67%,而NH4^ -^15N的总恢复率分别为43.1%和49%。植物和土壤微生物所固持的NO3^--^15N比NH4^ -^15N多。在整个实验期间,植物固持的NO3^-N较多,而且比土壤微生物固持了较多^15N。由于无机氮的含量一直很低,无机氮库所固持的^15N一般不超过1%。上述结果意味着短期内植物在高寒草甸中对沉降氮的去向起着决定作用。  相似文献   

8.
植物吸收转运无机氮的生理及分子机制   总被引:5,自引:0,他引:5  
氮是植物生长必需的营养元素。植物从土壤中吸收的氮素主要是NO3-和NH4 等无机氮源。植物吸收NO3-和NH4 的系统均有高亲和转运系统(high-affinity transport system,HATS)和低亲和转运系统(low-affinity transport system,LATS)之分。近10多年的研究已对这些转运系统的分子基础有了较好的理解,本文着重对近年来植物吸收无机氮分子机制的研究进展进行了综述。  相似文献   

9.
植物吸收转运无机氮的生理及分子机制   总被引:1,自引:0,他引:1  
李新鹏  童依平 《植物学报》2007,24(6):714-725
氮是植物生长必需的营养元素。植物从土壤中吸收的氮素主要是NO3-和NH4 +等无机氮源。植物吸收NO3-和NH4+的系统均有高亲和转运系统(high-affinity transport system, HATS)和低亲和转运系统(low-affinity transport system, LATS)之分。近10多年的研究已对这些转运系统的分子基础有了较好的理解, 本文着重对近年来植物吸收无机氮分子机制的研究进展进行了综述。  相似文献   

10.
 研究了在不同放牧率下形成的不同退化阶段的草地各形态氮素(全氮、硝态氮、铵态氮、无机氮和微生物氮)的变化情况,同时也研究了植被地上绿色生物量与各形态氮素季节变化的同步性关系。土壤全氮含量相对稳定,随草地植被状况和植物生长时期变化不大,说明土壤总氮库有相当的弹性。土壤硝态氮(NO-3-N)、铵态氮(NH+4-N)、无机氮(IN)和微生物氮(Micro-N)季节变化明显。土壤Micro-N和NO-3-N含量随植物生长逐渐降低,到植物枯黄期含量又回复到较高的水平;土壤NH+4-N含量随植物生长有逐渐升高的趋势;IN则随着植物的生长出现低-高-低-高的特点,且与植被地上绿色生物量呈显著负相关(R=-0.247, p<0.01)。在放牧条件下草原植物优先利用NO-3-N,NO-3-N与植被地上绿色生物量有显著的负相关性,是形成草原植被地上绿色生物量的有效性氮素。Micro-N能解释土壤IN 22.3%的变异(R2=0.223, p<0.01),Micro-N是土壤无机氮的重要来源。土壤NH+4-N与Micro-N呈显著负相关(R=-0.222, p<0.01),说明土壤微生物对土壤NH+4-N有偏好吸收。总体上,不同形态的氮素在各土壤层次间差异显著,随土壤层次的加深含量逐步降低。连续放牧11年恢复两年后,各氮素组分对放牧压力消除的响应并不一致。土壤全氮含量与停止放牧前相比变化差异不显著;而Micro-N对放牧压力消失的响应在不同处理下整个生长季的结果比较一致,即以前过度和中度放牧处理的Micro-N含量较高,无牧和轻牧含量较低;IN、NH+4-N和NO-3-N变化比较复杂,在不同放牧恢复处理上结果并不一致。总的来看,以前中度和过度放牧的IN、NH+4-N和NO-3-N含量较高,存在潜在损失的可能。经过两年的恢复,植被地上绿色生物量(8月)过牧处理与无牧处理差异不显著。  相似文献   

11.
利用PVC顶盖埋管原位培育法测定了北京东灵山地区一个油松纯林和一个油松-辽东栎落叶阔叶混交林生态系统土壤无机氮库、氮素净矿化/硝化速率的季节动态以及年度净矿化/硝化量。结果发现:1)两个生态系统的土壤无机氮库和氮素净矿化/硝化速率都存在比较明显且比较一致的季节动态,但个别时期也存在较大差异;2)纯林与混交林土壤NH+4-N浓度在各月都没有显著差异,而NO-3-N浓度,除了1995年11月和1996年8月纯林显著高于混交林外,其它月份也都差异不显著;3)无论是年度净矿化总量(纯林,22.7kg.hm-2;混交林,55.5kg.hm-2)及其占总全N量的百分比(纯林,0.694%;混交林,2.128%),还是年度净硝化总量(纯林,26.7kg.hm-2;混交林,44.6kg.hm-2)及其占总全N量(纯林,0.815%;混交林,1.707%)的百分比,油松针阔混交林生态系统均显著大于油松纯林,高达后者的两倍左右,而净硝化氮占净矿化氮的百分比则相反,油松纯林(100%)显著高于油松-辽东栎混交林(80.2%)。上述结果表明:油松-辽东栎针阔混交林生态系统土壤的氮素有效性(即土壤的供氮能力)以及维持土壤中植物可利用氮素的能力都显著高于油松纯林。物种构成及在其影响下所产生的林下微生境和人为干扰活动可能是造成这种差异的主要原因。  相似文献   

12.
Landscape patterns of free amino acids in arctic tundra soils   总被引:16,自引:3,他引:13  
Concentrations of free amino acids were measured in soils from four major ecosystem types in arctic Alaska. Total free amino acid concentrations were several-fold higher than ammonium (the major form of inorganic nitrogen) in water extracts of soils. The dominant free amino acids in these soils were glycine, aspartic acid, glutamic acid, serine, and arginine. Concentrations of total amino acids ranged 5-fold across communities, being highest in tussock tundra and lowest in wet meadows. Incubation experiments indicate that the turnover of amino acids is rapid, which suggests high rates of gross nitrogen mineralization in these soils. The high concentrations and dynamic nature of soil free amino acids suggest that this nitrogen pool is a significant component of nitrogen cycling in these tundra ecosystems.  相似文献   

13.
Competition for nitrogen between plants and soil microorganisms   总被引:7,自引:0,他引:7  
Experiments suggest that plants and soil microorganisms are both limited by inorganic nitrogen, even on relatively fertile sites. Consequently, plants and soil microorganisms may compete for nitrogen. While past research has focused on competition for inorganic nitrogen, recent studies have found that plants/mycorrhizae in a wide range of ecosystems can use organic nitrogen. A new view of competitive interactions between plants and soil microorganisms is necessary in ecosystem where plant uptake of organic nitrogen is observed.  相似文献   

14.
高山苔原生态系统的土壤无机氮含量较低,对氮的缓冲性弱而易受外源氮输入的影响.本研究以长白山北坡苔原带土壤为研究对象,通过室内培养试验,以NH4NO3为外加氮源,设置3个施氮水平:对照(CK,0 kg·hm-2),低氮(N1,25 kg·hm-2),高氮(N2,50 kg·hm-2),分析长白山苔原带土壤碳、氮矿化对氮沉降的响应.结果表明: 氮添加处理对长白山苔原带土壤碳矿化速率影响不显著,但对土壤碳矿化累积矿化量影响显著,N2抑制了土壤的碳矿化作用.培养40 d后,氮添加处理提高了土壤无机氮含量;而培养80 d后,N2与N1的无机氮含量差异不显著,但都明显高于CK,氮输入促进了土壤氮的矿化.培养过程中,N1处理下的微生物生物量碳、氮高于N2和CK处理,说明低氮输入对土壤微生物活性的促进作用更明显.在未来氮沉降增加的背景下,长白山苔原土壤碳、氮周转可能加快,提高土壤无机氮含量.土壤中无机氮含量增加,虽然可以为植物生长提供更多生长所需的氮素,但也提高了土壤氮素的流失风险.  相似文献   

15.
采用原位培养法和时空替代法,对江西中部亚热带常绿阔叶林、天然马尾松林、人工杉木林、人工马褂木林的土壤氮素矿化速率及其有效性进行了比较研究,以探讨森林转换对土壤氮素矿化作用的影响。结果表明:转换前后各森林土壤无机氮库(NH4 -N、NO3--N)及氮素矿化速率(氨化速率、硝化速率)均呈现明显的季节动态,NH4 -N库冬春较大,NO3--N库夏秋较大,氨化速率与硝化速率均以夏秋强烈。森林转换改变了土壤氮素矿化格局,常绿阔叶林转变成马尾松林、杉木林、马褂木林后,土壤年均氨化速率分别降低了110.67%、100.76%、96.20%,而硝化速率提高了54.92%、24.19%、 24.46%;马尾松林年均总净矿化速率与常绿阔叶林相近,杉木林、马褂木林分别降低了24.68%、26.01%;另外,除常绿阔叶林外,马尾松林、杉木林、马褂木林的土壤氮素矿化量都小于植被吸收量。这些研究结果说明亚热带地区常绿阔叶林转换成其它次生林会增加氮素流失的危险性,氮素缺乏会成为这些森林生长的限制因子。  相似文献   

16.
Treeline shifts in the Ural mountains affect soil organic matter dynamics   总被引:2,自引:0,他引:2  
Historical photographs document that during the last century, forests have expanded upwards by 60–80 m into former tundra of the pristine Ural mountains. We assessed how the shift of the high‐altitude treeline ecotone might affect soil organic matter (SOM) dynamics. On the gentle slopes of Mali Iremel in the Southern Urals, we (1) determined the differences in SOM stocks and properties from the tundra at 1360 m above sea level (a.s.l.) to the subalpine forest at 1260 m a.s.l., and (2) measured carbon (C) and nitrogen (N) mineralization from tundra and forest soils at 7 and 20 °C in a 6‐month incubation experiment. C stocks of organic layers were 3.6±0.3 kg C m?2 in the tundra and 1.9±0.2 kg C m?2 in the forest. Mineral soils down to the bedrock stored significantly more C in the forest, and thus, total soil C stocks were slightly but insignificantly greater in the forest (+3 kg C m?2). Assuming a space for time approach based on tree ages suggests that the soil C sink due to the forest expansion during the last century was at most 30 g C m?2 yr?1. Diffuse reflective infrared spectroscopy and scanning calorimetry revealed that SOM under forest was less humified in both organic and mineral horizons and, therefore, contained more available substrate. Consistent with this result, C mineralization rates of organic layers and A horizons of the forest were two to four times greater than those of tundra soils. This difference was similar in magnitude to the effect of increasing the incubation temperature from 7 to 20 °C. Hence, indirect climate change effects through an upward expansion of forests can be much larger than direct warming effects (Δ0.3 K across the treeline). Net N mineralization was 2.5 to six times greater in forest than in tundra soils, suggesting that an advancing treeline likely increases N availability. This may provide a nutritional basis for the fivefold increase in plant biomass and a tripling in productivity from the tundra to the forest. In summary, our results suggest that an upward expansion of forest has small net effects on C storage in soils but leads to changes in SOM quality, accelerates C cycling and increases net N mineralization, which in turn might stimulate plant growth and thus C sequestration in tree biomass.  相似文献   

17.

Background

Despite the large stocks of organic nitrogen in soil, nitrogen availability limits plant growth in many terrestrial ecosystems because most plants take up only inorganic nitrogen, not organic nitrogen. Although some vascular plants can assimilate organic nitrogen directly, only recently has organic nitrogen been found to contribute significantly to the nutrient budget of any plant. Carnivorous plants grow in extremely nutrient-poor environments and carnivory has evolved in these plants as an alternative pathway for obtaining nutrients. We tested if the carnivorous pitcher plant Sarracenia purpurea could directly take up intact amino acids in the field and compared uptake of organic and inorganic forms of nitrogen across a gradient of nitrogen deposition. We hypothesized that the contribution of organic nitrogen to the nitrogen budget of the pitcher plant would decline with increasing nitrogen deposition.

Methodology and Principal Findings

At sites in Canada (low nitrogen deposition) and the United States (high nitrogen deposition), individual pitchers were fed two amino acids, glycine and phenylalanine, and inorganic nitrogen (as ammonium nitrate), individually and in mixture. Plants took up intact amino acids. Acquisition of each form of nitrogen provided in isolation exceeded uptake of the same form in mixture. At the high deposition site, uptake of organic nitrogen was higher than uptake of inorganic nitrogen. At the low deposition site, uptake of all three forms of nitrogen was similar. Completeness of the associated detritus-based food web that inhabits pitcher-plant leaves and breaks down captured prey had no effect on nitrogen uptake.

Conclusions and Significance

By taking up intact amino acids, Sarracenia purpurea can short-circuit the inorganic nitrogen cycle, thus minimizing potential bottlenecks in nitrogen availability that result from the plant''s reliance for nitrogen mineralization on a seasonally reconstructed food web operating on infrequent and irregular prey capture.  相似文献   

18.
In this study we show that the natural abundance of the nitrogen isotope 15, δ15N, of plants in heath tundra and at the tundra-forest ecocline is closely correlated with the presence and type of mycorrhizal association in the plant roots. A total of 56 vascular plant species, 7 moss species, 2 lichens and 6 species of fungi from four heath and forest tundra sites in Greenland, Siberia and Sweden were analysed for δ15N and N concentration. Roots of vascular plants were examined for mycorrhizal colonization, and the soil organic matter was analysed for δ15N, N concentration and soil inorganic, dissolved organic and microbial N. No arbuscular mycorrhizal (AM) colonizations were found although potential host plants were present in all sites. The dominant species were either ectomycorrhizal (ECM) or ericoid mycorrhizal (ERI). The δ15N of ECM or ERI plants was 3.5–7.7‰ lower than that of non-mycorrhizal (NON) species in three of the four sites. This corresponds to the results in our earlier study of mycorrhiza and plant δ15N which was limited to one heath and one fellfield in N Sweden. Hence, our data suggest that the δ15N pattern: NON/AM plants > ECM plants ≥ ERI plants is a general phenomenon in ecosystems with nutrient-deficient organogenic soils. In the fourth site, a␣birch forest with a lush herb/shrub understorey, the differences between functional groups were considerably smaller, and only the ERI species differed (by 1.1‰) from the NON species. Plants of all functional groups from this site had nearly twice the leaf N concentration as that found in the same species at the other three sites. It is likely that low inorganic N availability is a prerequisite for strong δ15N separation among functional groups. Both ECM roots and fruitbodies were 15N enriched compared to leaves which suggests that the difference in δ15N between plants with different kinds of mycorrhiza could be due to isotopic fractionation at the␣fungal-plant interface. However, differences in δ15N between soil N forms absorbed by the plants could also contribute to the wide differences in plant δ15N found in most heath and forest tundra ecosystems. We hypothesize that during microbial immobilization of soil ammonium the microbial N pool could become 15N-depleted and the remaining, plant-available soil ammonium 15N-enriched. The latter could be a main source of N for NON/AM plants which usually have high δ15N. In contrast, amino acids and other soil organic N compounds presumably are 15N-depleted, similar to plant litter, and ECM and ERI plants with high uptake of these N forms hence have low leaf δ15N. Further indications come from the δ15N of mosses and lichens which was similar to that of ECM plants. Tundra cryptogams (and ECM and ERI plants) have previously been shown to have higher uptake of amino acid than ammonium N; their low δ15N might therefore reflect the δ15N of free amino acids in the soil. The concentration of dissolved organic N was 3–16 times higher than that of inorganic N in the sites. Organic nitrogen could be an important N source for ECM and, in particular, ERI plants in heath and forest tundra ecosystems with low release rate of inorganic N from the soil organic matter. Received: 8 June 1997 / Accepted: 28 February 1998  相似文献   

19.
《植物生态学报》2017,41(10):1051
Aims Although acquisition of soil organic nitrogen (N)(mainly amino acids) by plants is a widespread ecological phenomenon in many terrestrial ecosystems, the rate of organic N uptake and their contributions to plant nutrient supply are poorly understood. Our objective was to determine the relative contributions of inorganic N (NO3-N and NH4+-N) and organic N (amino acids) to plant N uptake in a high-frigid forest ecosystem.Methods The differences in the uptake rate of three different forms of N (NO3-N, NH4+-N and glycine) were quantified by exposing seedlings of two dominant tree species (Picea asperata and Betula albo-sinensis) in subalpine coniferous forests of western Sichuan, China, to trace quantities of K15NO3,15NH4Cl and (U-13C2/15N) glycine.Important findings Both 13C and 15N were significantly enriched in fine roots 2 h after tracer application, indicating the occurrence of glycine uptake in P. asperata and B. albo-sinensis seedlings. The seedlings of two tree species had a significant preference for NO3-N compared with glycine and NH4+-N, and the uptake rate of NO3-N was 5 to 10 times greater than that of glycine and NH4+-N. The roots of seedlings in the two species took up glycine more rapidly than NH4+-N, implying that soil organic N (i.e., amino acids) could be an important N source for the two species in subalpine coniferous forests. The results of this study are of great theoretical significance for understanding N utilization strategies and nutrient regulation processes in plants of the high-frigid forest ecosystems.  相似文献   

20.
草地生态系统中土壤氮素矿化影响因素的研究进展   总被引:41,自引:5,他引:36  
氮素是各种植物生长和发育所需的大量营养元素之一,也是牧草从土壤吸收最多的矿质元素.土壤中的氮大部分以有机态形式存在,而植物可以直接吸收利用的是无机态氮.这些有机态氮在土壤动物和微生物的作用下。由难以被植物直接吸收利用的有机态转化为可被植物直接吸收利用的无机态的过程就是土壤氮的矿化.氮素矿化受多种因子的影响,这些因子可以归结为生物因子和非生物因子.生物因子包括:土壤动物、土壤微生物和植物种类.土壤动物可以促进土壤有机质的矿化;土壤微生物种类、结构及功能与氮的分解、矿化有密切的关系;不同的植物种类对土壤氮素的矿化作用是不相同的,一般来说。有豆科植物生长的土壤比其它种类土氮素矿化的作用大.非生物因素一般可以分为环境因子和人类活动干扰.环境因子中土壤温度和含水量对土壤氮素矿化的影响是国内外众多科学家研究的方向.尽管如此,在此方面的研究还没有取得一致意见,仍然需要进行这方面的研究,而在其他诸如:不同的土壤质地与土壤类型方面,研究报道的结论也很不一致,草地生态系统中人类活动对土壤氮素矿化的影响主要包括,不同强度的放牧,割草以及施肥、火烧强度等.非生物因子对氮素矿化的影响非常直接和明显,尤其是人类活动.本文综述了近年来影响草地生态系统土壤氮素矿化有关因素的一些进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号