首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The alcohol dehydrogenase (ADH), phosphoglucose mutase (PGM), glucosephosphate isomerase (GPI), glutamic oxaloacetic transaminase (GOT), malate dehydrogenase (MDH), leaf esterases (ESTL), leaf acid (ACPH) and endosperm alkaline (PHE) phosphatases, leaf peroxidases (PERL) zymogram phenotypes of Triticum aestivum, Agropyron intermedium, Triticum aestivumAgropyron intermedium octoploids and six Agropyron intermedium chromosome additions to Triticum aestivum and two ditelocentric addition lines were determined. It was found that the six disomic chromosome addition lines and one ditelocentric chromosome addition line could be distinguished from one another and from the other possible lines on the basis of the zymogram phenotypes of these isozymes. The structural gene Acph-X1 was located on Agropyron chromosome L1, the genes Got-X3 and Mdh-X2 on chromosome L2, the gene Gpi-X1 on chromosome L3, the genes Adh-X1, Pgm-X1 and Phe-3 on chromosome L4, gene Perl-1 on chromosome L5 and the gene Estl-2 on chromosome L7 and chromosome arm L7d2. These gene locations provide evidence of homoeology between Agropyron chromosomes L1, L2, L3, L4, L5 and L7 and the Triticum aestivum chromosomes of homoeologous groups 7, 3, 1, 4, 2 and 6, respectively.  相似文献   

2.
Summary Genetic analyses were conducted on alkaline phosphatases of the endosperm of dry kernels and leaf acid phosphatases in four open pollinated and one inbred line of cultivated rye (Secale cereale L.). A total of seven alkaline phosphatase isozymes were observed occurring at variable frequencies in the different cultivars analyzed. We propose that at least five loci control the alkaline phosphatases of rye endosperm — Alph-1, Alph-2, Alph-3, Alph-4 and Alph-5 — all of which have monomeric behaviour. The leaf acid phosphatases are controlled by one locus and have a dimeric quaternary structure. All loci coding for alkaline phosphatase isozymes showed one active, dominant allele and one null, recessive allele, except for the locus Alph-3 which showed two active, dominant alleles and one null, recessive one. The linkage analyses suggest the existence of two linkage groups for alkaline phosphatases: one of them would contain Alph-2, Alph-4, Alph-5 and the locus/loci coding isozymes 6 and 7. This linkage group is located in the 7RS chromosome arm. The other group would include Alph-1 and Alph-3 loci, being located in the 1RL chromosome arm. Leaf acid phosphatases have been previously located in the 7RL chromosome arm. Our data also support an independent relationship between loci controlling the endosperm alkaline phosphatases and leaf acid phosphatases.  相似文献   

3.
The relationships of three wheat-Aegilops longissima chromosome addition lines A, C, and D with homoeologous wheat chromosomes were studied in PMC meiosis. Substitutions of alien chromosome A for wheat chromosome 6 B, chromosome C for 1 B and chromosome D for 4 B were obtained. The production of 4 BS/C and 7 BS/D chromosome translocations indicated cytogenetic relationships of C partially to homoeologous wheat chromosomes of group 1 and 4, and D partially to homoeologous wheat chromosomes of group 4 and 7.  相似文献   

4.
Summary The distribution of three biochemical markers, U-1, CM-4 and Aphv-a, -b, among wheat-Aegilops addition lines carrying Mv chromosomes from Aegilops ventricosa (genomes DvMv) has been investigated. Addition lines which had been previously grouped together on the basis of common non-biochemical characters carried marker U-1, a protein component from the 2M urea extract. The added chromosome, in the appropriate genetic background, seems to confer a high level of resistance to the eyespot disease, caused by the fungus Cercosporella herpotrichoides. The other two markers were concomitantly associated with another similarly formed group of addition lines. Both CM-4, a protein component from the chloroform:methanol extract, and Aphv-a, -b, alkaline phosphate isozymes, have been previously shown to be associated with homoeologous chromosome group 4, which suggests that the added chromosome in the second group of addition lines is 4Mv.  相似文献   

5.
Summary Each of the three genomes in hexaploid wheat controls the expression of a specific lectin in the embryo. The chromosomes which control their synthesis were determined using nullisomic-tetrasomic and inter-varietal chromosome substitution lines of Chinese Spring. All three wheat lectins were shown to be controlled by the homoeologous group 1 chromosomes. Using ditelosomic lines of Chinese Spring the lectin genes could be localized on the long arms of chromosomes 1A and 1D. Inter-specific addition and substitution lines of Aegilops umbellulata chromosomes to Chinese Spring indicated that chromosome 1U, which is homoeologous to the group 1 chromosomes of wheat, controls lectin synthesis.  相似文献   

6.
Summary Subunits of wheat endosperm proteins have been fractionated by two-dimensional electrophoresis. To determine which subunits in the two-dimensional electrophoretic pattern belong to gliadin or glutenin the endosperm proteins have also been fractionated by a modified Osborne procedure and by gel filtration on Sephadex G-100 and Sepharose CL-4B prior to separation by two-dimensional electrophoresis.The control of production of five major grain protein subunits is shown to be determined by chromosomes 6A, 6B and 6D by comparing two-dimensional electrophoretic protein subunit patterns of aneuploid lines of the variety Chinese Spring. From these and previous studies it is concluded that some , and gliadins (molecular weights by SDS-PAGE 30,000 to 40,000) are specified by genes on the short arms of homoeologous Group 6 chromosomes, the gliadins (molecular weights by SDS-PAGE 50,000 to 70,000) are specified by genes on the short arms of homoeologous Group 1 chromosomes and the glutenin subunits (molecular weights by SDS-PAGE > 85,000) are specified by genes on the long arms of homoeologous Group 1 chromosomes.No major gliadins or glutenin subunits were absent when any of the chromosomes in homoeologous Groups 2, 3, 4, 5 or 7 were deleted. However two gliadins whose presumed structural genes are on chromosome 6D were absent in aneuploid stocks of Chinese Spring carrying two additional doses of chromosome 2A. Two out of thirty-three intervarietal or interspecific chromosome substitution lines examined, involving homoeologous Group 2 chromosomes, lacked the same two gliadins. All the subunits in the other thirty-one chromosome substitution lines were indistinguishable from those in Chinese Spring. It is therefore concluded that the major variation affecting gliadin and glutenins in wheat is concentrated on the chromosomes of homoeologous Groups 1 and 6 but Group 2 chromosomes are candidates for further study.An endosperm protein controlled by chromosome 4D in Chinese Spring is shown to be a high molecular weight globulin.  相似文献   

7.
Relationships between the chromosomes of Aegilops umbellulata and wheat   总被引:3,自引:0,他引:3  
 A comparative genetic map of Aegilops umbellulata with wheat was constructed using RFLP probes that detect homoeoloci previously mapped in hexaploid bread wheat. All seven Ae. umbellulata chromosomes display one or more rearrangements relative to wheat. These structural changes are consistent with the sub-terminal morphology of chromosomes 2 U, 3 U, 6 U and 7 U. Comparison of the chromosomal locations assigned by mapping and those obtained by hybridization to wheat/Ae. umbellulata single chromosome addition lines verified the composition of the added Ae. umbellulata chromosomes and indicated that no further cytological rearrangements had taken place during the production of the alien-wheat aneuploid lines. Relationships between Ae. umbellulata and wheat chromosomes were confirmed, based on homoeology of the centromeric regions, for 1 U, 2 U, 3 U, 5 U and 7 U. However, homoeology of the centromeric regions of 4 U with wheat group-6 chromosomes and of 6 U with wheat group-4 chromosomes was also confirmed, suggesting that a re-naming of these chromosomes may be pertinent. The consequences of the rearrangements of the Ae. umbellulata genome relative to wheat for gene introgression are discussed. Received: 10 July 1997 / Accepted: 19 September 1997  相似文献   

8.
Summary Further data on the inheritance of seed peroxidases of hexaploid wheat (Triticum aestivum L.) and rye (Secale cereale L.) have been obtained from the genetic analysis of several progenies of both species. Additional data on the inheritance and the chromosomal location and linkage have been obtained for peroxidases of wheat embryo and rye endosperm. The general presence of null alleles in peroxidase loci has been confirmed in both species. In addition to simple monogenic inheritance, epistatic segregations have been observed in both species. These epistatic segregations again suggest the presence of regulatory genes controlling the expression of individual peroxidases in both species and also the existence of several duplicate homoeologous genes in wheat. Known linkage relationships have been confirmed and new ones are indicated. Loci for embryo wheat peroxidases seem to be in chromosomes of the homoeology group 3. The rye endosperm ones should be in chromosome 7R, although it is hypothesized that a duplication of gene EPer1 is located in chromosomes 4R and 7R.  相似文献   

9.
C-banding patterns and polymorphisms were analyzed in several accessions of the diploidAegilops speciesAe. uniaristata, Ae. mutica, andAe. comosa subsp.comosa and subsp.heldreichii, and standard karyotypes of these species were established. Variation in C-band size and location was observed between different accessions, but did not prevent chromosome identification. One accession ofAe. uniaristata was homozygous for whole-arm translocations involving chromosomes 1N and 5N. The homoeologous relationships of these chromosomes were established by comparison of chromosome morphologies and C-banding patterns to other diploidAegilops species with known chromosome homoeology. In addition, in situ hybridization analysis with a 5S rDNA probe was used to identify homoeologous groups 1 and 5 chromosomes. The present analysis permitted the assignment of allAe. mutica, comosa subsp.comosa, andAe. comosa subsp.heldreichii chromosomes, and three of the sevenAe. uniaristata chromosomes according to their homoeologous groups. The data presented will be useful analyzing genome differentiation in polyploidAegilops species.  相似文献   

10.
Summary A method of assessing chromosome homoeologies within the genomes of the Triticeae which does not require the ultimate test of substitution of the chromosomes into wheat is presented. This takes the form of a table listing key characters that are associated with specific homoeologous groups. These characters include marker genes, chromosome morphology, and plant morphologies of wheat-alien chromosome addition and wheat tetrasomic lines.  相似文献   

11.
Summary A -amylase cDNA clone isolated from barley has been used to locate -amylase encoding sequences on wheat, rye, and Aegilops umbellulata chromosomes by hybridisation to restriction endonuclease digested DNA obtained from wheat aneuploid and wheat-alien addition lines. Structural genes were identified on homoeologous group 4 and 5 chromosomes, confirming the results of isozyme studies. In addition, a further set of structural genes was found on homoeologous group 2 chromosomes. It is proposed that there are two homoeoallelic series, -Amy-1 on group 4 or 5 chromosomes, and -Amy-2 on group 2 chromosomes. Evidence is presented that each locus contains one or two -amylase structural genes, and it is suggested that the large number of isozymes seen upon IEF are due to post-translational modifications.  相似文献   

12.
The Triticum aestivum — Aegilops biuncialis (2n=4x=28; UbUbMbMb) disomic addition lines 2Mb, 3Mb, 7Mb and 3Ub were crossed with the wheat cv. Chinese Spring ph1b mutant genotype in order to induce homoeologous pairing, with the final goal of introgressing Ae. biuncialis chromatin into cultivated wheat. Wheat-Aegilops homoeologous chromosome pairing was studied in metaphase I of meiosis in the F1 hybrid lines. Using U and M genomic probes, genomic in situ hybridization (GISH) demonstrated the occurrence of wheat-Aegilops homoeologous pairing in the case of chromosomes 2Mb, 3Mb and 3Ub, but not in the case of 7Mb. The wheat-Aegilops pairing frequency decreased in the following order: 2Mb > 3Mb > 3Ub > 7Mb, which may reflect differences in the wheat-Aegilops homoeologous relationships between the examined Aegilops chromosomes. The selection of wheat-Aegilops homoeologous recombinations could be successful in later generations.  相似文献   

13.
Aegilops umbellulata Zhuk. carries genes at Glu-U1 loci that code for a pair of high-molecular-weight glutenin subunits not found in common wheat, Triticum aestivum. Wheat-Ae. umbellulata recombinant lines were produced with the aim of transferring genes coding for glutenin subunits from Ae. umbellulata into wheat with minimal flanking material. We used fluorescent genomic in situ hybridization to evaluate the extent of recombination and to map physically the translocation breakpoints on 11 wheat-Ae. umbellulata recombinant lines. In situ hybridization was able to identify alien material in wheat and showed breakpoints not only near the centromeres but also along chromosome arms. To characterize and identify chromosomes further, including deletions along the 1U chromosome, we used simultaneous multiple target in situ hybridization to localize a tandemly repeated DNA sequence (pSc119.2) and the 18S–25S and 5S rRNA genes. One line contained an Ae. umbellulata telocentric chromosome and another two had different terminal deletions, mostly with some wheat chromosome rearrangements. Although from six independent original crosses, the other eight lines included only two types of intercalary wheat-Ae. umbellulata recombination events. Five occurred at the 5S rRNA genes on the short arm of the Ae. umbellulata chromosome with a distal wheat-origin segment, and three breakpoints were proximal to the centromere in the long arm, so most of the long arm was of Ae. umbellulata origin. The results allow characterization of recombination events in the context of the karyotype. They also facilitate the design of crossing programmes to generate lines where smaller Ae. umbellulata chromosome segments are transferred to wheat with the potential to improve bread-making quality by incorporating novel glutenin subunits without undesirable linked genes.  相似文献   

14.
Induction of recombination between rye chromosome 1RL and wheat chromosomes   总被引:2,自引:0,他引:2  
Summary The ph1b mutant in bread wheat has been used to induce homoeologous pairing and recombination between chromosome arm 1RL of cereal rye and wheat chromosome/s. A figure of 2.87% was estimated for the maximal frequency of recombination between a rye glutelin locus tightly linked to the centromere and the heterochromatic telomere on the long arm of rye chromosome 1R in the progeny of ph1b homozygotes. This equates to a gametic recombination frequency of 1.44%. This is the first substantiated genetic evidence for homoeologous recombination between wheat and rye chromosomes. No recombinants were confirmed in control populations heterozygous for ph1b. The ph1b mutant was also observed to generate recombination between wheat homoeologues.  相似文献   

15.
Isozymes in wheat-barley hybrid derivative lines   总被引:1,自引:0,他引:1  
Zymogram analysis was used to identify the barley chromosomes that carry the structural genes for particular isozymes. Wheat, barley, and wheatbarley hybrid derivative lines (which contained identified barley chromosomes) were tested by gel electrophoresis for isozymes of particular enzymes. It was found that barley chromosome 4 carries structural genes for acid phosphatase and amylase isozymes, barley chromosome 5 carries genes for phosphoglucose isomerase and malate dehydrogenase isozymes, and that barley chromosome 2 carries a gene for at least one glucose-6-phosphate dehydrogenase protomer. These results reinforce previous conclusions that barley chromosome 4 shows homoeology with wheat chromosome group 4 and that barley chromosome 5 shows homoeology with wheat chromosome group 1.  相似文献   

16.
P. K. Gupta 《Genetica》1972,43(4):504-530
The subtribe Triticinae consists of five genera, namely Aegilops, Agropyron, Haynaldia, Secale and Triticum, all with x=7 as the basic number and possibly derived from a common ancestor (PP). The homoeologous relationships known to exist between individual chromosomes from different genomes of hexaploid wheat, are being extended to other members of the subtribe. The available work in the area of homoeologous relationships in the subtribe Triticinae has been reviewed in detail. Homoeologous relationships of one chromosome of each of the four species of Aegilops i.e. Ae. comosa, Ae. caudata, Ae. umbellulata and Ae. bicornis are now known. Similarly, in the genus Agrophyron, relationships of six chromosomes of A. clongatum (2n=70), two chromosomes of A. clongatum (2n=14) and of two chromosomes of A. intermedium are known. The genus Secale, for which the author's own work is also available, has been most extensively studied and relationships of at least five chromosomes of S. cereale are now known. No other species of Secale has been used in similar studies. In the genus Haynaldia, no chromosome could be shown to have any relationship with a wheat chromosome, perhaps due to low erossability with Triticum aestivum. The above work has been discussed and reviewed.  相似文献   

17.
Summary The seed proteins of Chinese Spring wheat stocks which possess single chromosomes from other plant species related to wheat have been separated by gel electrophoresis in the presence of sodium dodecyl sulphate. Marker protein bands have been detected for both arms of barley chromosome 5, chromosome E (= 1R) and B (= 2R) of rye, chromosomes A,B (= 1Cu) and C (= 5Cu) of Aegilops umbellulata and chromosomes I and III of Agropyron elongatum. These studies, and previous findings, indicate that chromosome 5 of barley, chromosome 1R of rye, chromosome I of Ag. elongatum and possibly chromosome 1Cu of Ae. umbellulata are similar to chromosomes 1A, 1B and 1D in hexaploid wheat in that they carry genes controlling prolamins on their short arms and genes controlling high-molecular-weight (apparent molecular weight greater than 86,000) seed protein species on their long arms. These findings support the idea that all these chromosomes are derived from a common ancestral chromosome and that they have maintained their integrity since their derivation from that ancestral chromosome.  相似文献   

18.
A comparative genetic analysis of esterase (E.C.3.1.1.1) isozymes of wheat cultivar Chinese Spring in endosperm, embryo, coleoptile, leaf and root tissues revealed eight sets of isozymes characterised by different tissue specificities, pI ranges and the chromosomal locations of their controlling genes. This data was considered together with previously published work, resulting in a proposed rationalization of nine sets of wheat esterase isozymes. Although this classification included two sets of isozymes controlled by genes on the short arms of homoeologous group 3 chromosomes and three sets on the long arms of the same chromosomes, for which no recombination evidence of genetic distinctness has been obtained among either group, it is argued that the different characteristics of the various sets warrant retention of separate set nomenclatures. Previously unreported esterase genes includeEst-9, a low pI, monomeric, embryo-specific group with controlling genes on chromosomes 3BS and 3DS and two further members ofEs-1,Est-H1 inHordeum vulgare andEst-S l1 inAegilops longissima.  相似文献   

19.
Brown JW  Kemble RJ  Law CN  Flavell RB 《Genetics》1979,93(1):189-200
The genetic control of major wheat endosperm proteins by homoeologous group 1 chromosomes has been studied by two-dimensional polyacrylamide gel electrophoresis. The control of at least 15 distinct protein subunits or groups of protein subunits has been allocated to chromosomes 1A, 1B and 1D of Chinese Spring wheat from the analysis of grains of aneuploid genotypes. In addition, six protein subunits have been shown to be controlled by chromosome 1Cu of the related species, Aegilops umbellulata, from studies of wheat lines carrying disomic substitutions of 1Cu chromosomes. On the basis of protein subunit patterns, chromosome 1Cu is more closely related to chromosome 1D of wheat than to chromosomes 1A or 1B.  相似文献   

20.
Summary Isoelectric focussing in alkaline pH gels has permitted the identification of a new homoeoallelic series of genes,Est-6, encoding grain esterases in bread wheat,Triticum aestivum. Nullisomic analysis located these genes to the short arms of the homoeologous group 2 chromosomes. A search for polymorphism withinEst-6 revealed null alleles at each ofEst-A6,Est-B6 andEst-D6. A further homoeolocus,Est-M6, is present on chromosome arm2MS ofAegilops comosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号