首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 79 毫秒
1.
2.
3.
环状RNA(circular RNAs,circRNAs)是一类广泛存在于各种生物细胞中具有调控基因表达功能的非编码RNA,具有结构稳定和组织特异性表达等特征.有些circRNA分子富含微小RNA结合位点,可通过充当竞争性内源RNA的角色来发挥作用,如CDR1as对miR-7的海绵作用与肺癌、乳腺癌、胶质瘤及肌萎缩性脊髓侧索硬化等疾病发生相关.c ANRIL可通过影响多梳家族参与动脉粥样硬化的发生.大量circRNA的发现及其结构和功能的阐明不仅可以使我们更加深入地了解疾病的发生机制,而且为相关疾病的预防、诊断和治疗提供了新的方向.  相似文献   

4.
Circular RNAs (circRNAs) are a group of covalently closed, endogenous, non-coding RNAs, which exist widely in human tissues including the heart. Increasing evidence has shown that cardiac circRNAs play crucial regulatory roles in cardiovascular diseases (CVDs). In this review, we aimed to provide a systemic understanding of circRNAs with a special emphasis on the cardiovascular system. We have summarized the current research on the classification, biogenesis and properties of circRNAs as well as their participation in the pathogenesis of CVDs. CircRNAs are conserved, stable and have specific spatiotemporal expression; thus, they have been accepted as a potential diagnostic marker or an incremental prognostic biomarker for CVDs.  相似文献   

5.
Circular RNAs (circRNAs) are a class of endogenous RNAs characterized by a covalent loop structure. In comparison to other types of RNAs, the abundance of circRNAs is relatively low but due to the circular configuration, their stability is very high. In addition, circRNAs display high degree of tissue specificity. The sponging activity of circRNAs toward microRNAs is the best-described mode of action of circRNAs. However, the ability of circRNAs to bind with specific proteins, as well as to encode short proteins, propose alternative functions. This review introduces the biogenesis of circRNAs and summarizes the roles played by circRNAs in human diseases. These include examples of their functional roles in several organ-specific cancers, such as head and neck and breast and lung cancers. In addition, we review potential functions of circRNAs in diabetes, cardiovascular, and neurodegenerative diseases. Recently, a growing number of studies have demonstrated involvement of circRNAs in a wide spectrum of signaling molecular pathways, but at the same time many different and controversial views on circRNAs role and function are emerging. We conclude by offering cellular homeostasis generated by networks comprising circular RNAs, other non-coding RNAs and RNA-binding proteins. Accordingly, it is predictable that circRNAs, due to their highly stable nature and remarkable tissue specificity, will emerge as reliable biomarkers of disease course and treatment efficacy.Subject terms: Cancer, Cell biology, Molecular biology  相似文献   

6.
Xiao Chen  Wei Shi  Chao Chen 《Genomics》2019,111(4):598-606
Circular RNAs (circRNAs) are non-coding RNAs newly identified and play important roles in RNA regulation. The mechanism and function of circRNAs have been reported in some species. However, little is known regarding circRNAs in honey bees. In this study, we analyzed circRNAs through bioinformatics, and predicted 12,211 circRNAs in the ovary of honey bee queens. 1340, 175 and 100 circRNAs were differentially expressed in comparisons of egg-laying queens vs virgin queens, egg-laying inhibited queens vs egg-laying queens and egg-laying recovery queens vs egg-laying inhibited queens. Further, functional annotation of differentially expressed circRNAs revealed several pathways that are closely related to ovary activation and oviposition, including insulin secretion and calcium signaling pathways. Moreover, the potential interactions among circRNAs, miRNAs, lncRNAs and mRNAs were investigated. Ame_circ_0005197 and ame_circ_0016640 were observed to sponge several reproductive related miRNAs. These findings demonstrate that circRNAs have potential effects in ovary activation and oviposition of honey bees.  相似文献   

7.
《Genomics》2020,112(2):1335-1342
Circular RNAs (circRNAs) are a new kind of endogenous non-coding RNAs, which have been discovered continuously. More and more studies have shown that circRNAs are related to the occurrence and development of human diseases. Identification of circRNAs associated with diseases can contribute to understand the pathogenesis, diagnosis and treatment of diseases. However, experimental methods of circRNA prediction remain expensive and time-consuming. Therefore, it is urgent to propose novel computational methods for the prediction of circRNA-disease associations. In this study, we develop a computational method called LLCDC that integrates the known circRNA-disease associations, circRNA semantic similarity network, disease semantic similarity network, reconstructed circRNA similarity network, and reconstructed disease similarity network to predict circRNAs related to human diseases. Specifically, the reconstructed similarity networks are obtained by using Locality-Constrained Linear Coding (LLC) on the known association matrix, cosine similarities of circRNAs and diseases. Then, the label propagation method is applied to the similarity networks, and four relevant score matrices are respectively obtained. Finally, we use 5-fold cross validation (5-fold CV) to evaluate the performance of LLCDC, and the AUC value of the method is 0.9177, indicating that our method performs better than the other three methods. In addition, case studies on gastric cancer, breast cancer and papillary thyroid carcinoma further verify the reliability of our method in predicting disease-associated circRNAs.  相似文献   

8.
Yue  Binglin  Yang  Haiyan  Wu  Jiyao  Wang  Jian  Ru  Wenxiu  Cheng  Jie  Huang  Yongzheng  Lan  Xianyong  Lei  Chuzhao  Chen  Hong 《中国科学:生命科学英文版》2022,65(2):376-386
Science China Life Sciences - Circular RNAs (circRNAs), a novel class of non-coding RNAs with a loop structure, have recently been shown to participate in various pathophysiological processes....  相似文献   

9.
10.
Circular RNAs (circRNAs), which are more stable than linear mRNAs and long non-coding RNAs (LncRNAs), are detected in body fluids such as plasma, serum, and exosomes. Disease-associated circRNAs have significant clinical roles due to their diagnostic and prognostic values. Brother of regulator of imprinting site (BORIS) promotes cancer progression and is specifically highly expressed in the majority of carcinoma. However, the mechanism underlying the regulation of circRNAs by the oncoprotein BORIS and their role in regulating inflammation and immunity remain to be further explored. Vaccines prepared from circRNAs extracted from cancer cells showed that circRNAs induced inflammation and prevented cancer progression. Serum from animals injected with cancer cell-derived circRNAs vigorously reacted with cells that expressed cancer-specific antigen BORIS or cancer extracted circRNAs. It has been implicated that cancer-related circRNAs could be used as antigens to activate immune responses to prevent cancers and stimulate NF-κB signaling pathway by up-regulating and inducing TLR3. In the study we also found that BORIS regulated the expression of circRNAs and interacted with RNA motifs and the CCCTC binding factor (CTCF) motif adjacent to circRNA splicing sites to enhance the formation of circRNAs. Thus, our study delineated the novel mechanism by which cancer-specific antigen BORIS regulated circRNAs and identified that circRNAs could serve as a vaccine for cancer prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号