首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
The recretohalophyte with specialized salt-secreting structures including salt glands and salt bladders can secrete salt from their bodies and easily adapt themselves to many kinds of salt habitats. Salt glands and salt bladders, arose from dermatogen cells, are excretory organs specially adapted for dealing with ionic homeostasis in the cells of recretohalophytes. The main function of salt glands or salt bladders is to secrete excess ions that invade the plant. The structures of salt glands or salt bladders differ among plant species. In addition to structural differences, salt glands also differ in their secretion abilities. In this review, we mainly focus on recent progress in the mechanism of salt excretion of salt glands and salt bladders, and in particular, emphasize the vesicle-mediated secretion systems from the vacuole to the plasmalemma and the possibly involved membrane-bound translocating proteins for salt secretion of plant gland secretory cell.  相似文献   

2.
Protein phosphatase 2A (PP2A) is an enzyme consisting of three subunits: a scaffolding A subunit, a regulatory B subunit and a catalytic C subunit. PP2As were shown to play diverse roles in eukaryotes. In this study, the function of the Arabidopsis PP2A‐C5 gene that encodes the catalytic subunit 5 of PP2A was studied using both loss‐of‐function and gain‐of‐function analyses. Loss‐of‐function mutant pp2a‐c5‐1 displayed more impaired growth during root and shoot development, whereas overexpression of PP2A‐C5 conferred better root and shoot growth under different salt treatments, indicating that PP2A‐C5 plays an important role in plant growth under salt conditions. Double knockout mutants of pp2a‐c5‐1 and salt overly sensitive (sos) mutants sos1‐1, sos2‐2 or sos3‐1 showed additive sensitivity to NaCl, indicating that PP2A‐C5 functions in a pathway different from the SOS signalling pathway. Using yeast two‐hybrid analysis, four vacuolar membrane chloride channel (CLC) proteins, AtCLCa, AtCLCb, AtCLCc and AtCLCg, were found to interact with PP2A‐C5. Moreover, overexpression of AtCLCc leads to increased salt tolerance and Cl? accumulation in transgenic Arabidopsis plants. These data indicate that PP2A‐C5‐mediated better growth under salt conditions might involve up‐regulation of CLC activities on vacuolar membranes and that PP2A‐C5 could be used for improving salt tolerance in crops.  相似文献   

3.
Leakage of UV-absorbing substances from leaf discs was used to determine salt and osmotic injury after treatment. A relative leakage ratio was calculated by dividing the UV absorption after treatment by the total absorption obtained after freeze-killing the tissue. Time-course results using Populus tremuloides Michx. leaves indicated 24 h as an appropriate treatment duration. NaCl and KCl caused more leakage than Na2SO4 and K2SO4 in P. tremuloides and Fraxinus pennsylvanica Marsh, the most sensitive species tested. Amelanchier alnifolia (Nutt.) Nutt. ex Roem. was more sensitive to K2SO4 than to KCl. Elaeagnus angustifolia L. and Caragana arborescens Lm. were the most tolerant to both salts. Tolerance to salts was greater in August than earlier in the growing season. Treatment of leaves with solutions of sucrose, PEG-8000 and mannitol iso-osmotic with KCl and NaCl showed that increased leakage was caused by specific ion effects, rather than osmotic effects.  相似文献   

4.
5.
朱红菊  刘文革 《遗传》2018,40(4):315-326
多倍化是高等植物进化最重要的动力之一,多倍体植物由于基因组组成以及基因表达方面的变化,通常会表现出不同的生理现象,多倍体的抗性优于其同源二倍体祖先。土壤盐碱化和次生盐渍化是影响农作物生产的重要因素,严重制约着我国农业的可持续发展。同源多倍体植物耐盐能力较强,是作物遗传改良的重要种质资源,了解其耐盐机理对培育耐盐品种具有重要意义。本文从与盐胁迫相关的耐盐性进化、生理生化水平、细胞结构和分子层面等多角度总结了植物同源多倍体盐胁迫研究进展,并以作者所在研究团队培育出的多倍体西瓜为例讨论了多倍体抗逆性研究存在的问题及未来的发展方向,以期为多倍体抗逆优势机理研究提供参考。  相似文献   

6.
盐胁迫对4树种叶片中K^+和Na^+的影响及其耐盐能力的评价   总被引:39,自引:0,他引:39  
通过盆栽试验,对我国南方银杏(Ginkgo biloba L.)、侧柏[Patycladus orentalis(L.)Franco]、火炬松(Pinus taeda L.)和剌槐(Robinia Pseudoacacia L.)4造林树种苗木叶片中K^ 、N^ 浓度浓度和N^ /K^ 比进行测定,盐处理水平为0.0%(CK)、0.1%、0.3%和0.5%。随着盐浓度的提高,各树种叶片中Na^ 浓度和N^ /K^ 有逐渐升高的趋势,但K^ 浓度变化较小;随着盐胁迫时间的推移,各树种叶片中Na^ 、K^ 浓度和Na^ /K^ 比都没有明显的变化规律。方差分析和多层比较表明,侧柏、火炬松和剌槐叶片中Na^ 、K^ 浓度和N^ /K^ 比在4组处理间的差异均达显著或极显著水平。4树种中剌槐和侧柏的耐盐能力最强,银杏次之,火炬松最弱。  相似文献   

7.
小麦耐盐细胞系耐盐性分析   总被引:9,自引:0,他引:9  
通过一步筛选获得了耐盐(1.0%,NaCl)的小麦(Triticum aestivum)细胞系(Sr1),当SR1在含1.0%,NaCl的培养基上继代半年后,钭其中的一部分移入无盐培养基代10次,得到细胞系SR2。无论是在正常还是办迫条件下,SR1的鲜重增量/克鲜重、脯氨酸及可溶性蛋白含量均高于原始型(SN),而含水量均高于原始型(SN),而含水量、K^+及可溶性糖含量却低于SN。Na^+和Cl^  相似文献   

8.
Three kinds of nuclease preparations, each of which having both endonuclease activity that formed 5′-mononucleotides and 3′-nucleotidase activity, were separated and partially purified from Shii-take, Lentinus edodes. Both enzyme activities of each preparation showed a similar thermostability and electrophoretic mobility on Polyacrylamide gel, and a competitive relationship was observed between RNA and 3′-AMP in their enzyme reactions. From these results, it is concluded that both enzyme activities of these three preparations reside in a single protein, respectively. They resemble one another in substrate specificity, cleavage pattern of RNA and thermostability, but are distinguishable from one another by molecular weight, electrophoretic mobility and optimum pH for degradation of RNA.  相似文献   

9.
以两种菊属野生植物'菊花脑'(Dendranthema nankingense)和'乙立寒菊'(D.indicum var.maruyamanum)幼苗为材料,通过Hogland营养液水培试验研究了120和180 mmol·L NaCl的渐进和非渐进胁迫处理对幼苗叶片受害程度及植株生物量、根系活力、叶片叶绿素含量、相对电导率和丙二醛含量的影响,以探讨它们对盐冲击的生理响应规律.结果显示:(1)在两种浓度盐胁迫下,两种菊属植物的整株鲜重、根系活力、叶片叶绿素含量大多显著下降,而同期的叶片丙二醛(MDA)含量、相对电导率显著增加;渐进盐胁迫下材料受害程度均轻于非渐进胁迫;盐胁迫浓度越大,各指标变化幅度越大,且两种胁迫方式下各指标的差异亦越大;(2)'菊花脑'对盐胁迫敏感,而'乙立寒菊'对盐胁迫的耐性较强;相同盐胁迫浓度下,非渐进胁迫与渐进胁迫间的差异在盐敏感材料上表现较明显.研究表明,两种菊属植物均存在盐冲击现象,并以耐盐性弱的材料表现更加突出,且高盐胁迫下植物所受的冲击伤害更明显.  相似文献   

10.
在温室条件下,采用盆栽根箱培养的方法研究盐胁迫下I 69杨(PopulusdeltoidesBartr.cv.'Lux')和NL 1381杨〔PopulusdeltoidesBartr.cv.'Lux'×P.euramericana(Dode)GeninierCL'I 45 51'〕根际、非根际土壤盐分分布特征。盐处理浓度共设3个水平:CK(NaCl0g kg)、处理A(NaCl1g kg)和处理B(NaCl2g kg),采用完全随机设计。结果表明,2个杨树无性系根际水溶性K+亏缺,水溶性Na+、Ca2+和Mg2+富集。K+的亏缺率及Na+的富集率随NaCl处理浓度的增大而减小,Ca2+和Mg2+的富集率在非盐渍条件下最低,处理A达最高,处理B较处理A略有下降。在盐胁迫下,无性系NL 1381杨根际土壤Na+的浓度和电导率均低于无性系I 69杨,可以有效减轻盐分对根系的渗透胁迫,相对而言具有较强的抗盐性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号