首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
动物传播者对植物更新的促进与限制   总被引:1,自引:0,他引:1  
李宁  王征  潘扬  白冰  鲁长虎 《应用生态学报》2012,23(9):2602-2608
在动物 植物的关系网络中,传播者对植物更新具有促进与限制两方面作用.本文从种群尺度总结了传播者取食、空间利用等行为对植物更新的影响;从群落尺度分析了多种传播者传播有效性对植物更新的促进与限制.传播者对食物的处理方式决定了种子的命运,且具有明显的种间差异;植物在传播者食谱中的地位亦决定其更新的成败,成为动物偏好的食物可助其摆脱森林破碎化等不利事件的影响.动物的空间行为可导致种子命运发生改变.传播者移动距离能否逃逸同种成树对种子的距离限制,影响种子的更新命运;动物偏好的适宜生境与适于植物萌发生境的空间一致性程度影响传播者传播的成效.有效传播者的非冗余性促使种子传播网络更稳定,利于植物更新;无效传播直接限制植物更新,但为其他植物定殖提供了可用空间.今后应将传播者行为融入植物种群更新研究,而从生态系统服务角度揭示传播者在植被恢复的作用应是未来恢复生态学研究的重点.  相似文献   

2.
Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.  相似文献   

3.
Aim We estimated the patterns of seed deposition provided by the eyed lizard, Timon lepidus, and evaluated whether these patterns can be generalized across plant species with different traits (fruit and seed size) and spatial distributions. Location Monteagudo Island, Atlantic Islands National Park (north‐western Spain). Methods We radio‐tracked seven lizards for 14 days and estimated their home ranges using fixed kernels. We also geo‐referenced all fruit‐bearing individuals of four plant species dispersed by eyed lizards in the study area (Corema album, Osyris alba, Rubus ulmifolius and Tamus communis), measured the passage time of their seeds through the lizard gut, and estimated seed predation in four habitats (bare sand, grassland, shrub and gorse). Seed dispersal kernels were estimated using a combination of these data and were combined with seed predation probability maps to incorporate post‐dispersal seed fate (‘seed survival kernels’). Results Median seed gut‐passage times were around 52–98 h, with maximum values up to 250 h. Lizards achieved maximum displacement in their home ranges within 24–48 h. Seed predation was high (80–100% of seeds in 2 months), particularly under Corema shrub and gorse. Seed dispersal kernels showed a common pattern, with two areas of preferential seed deposition, but the importance of these varied among plant species. Interspecific differences among dispersal kernels were strongly reduced by post‐dispersal seed predation; hence, seed survival kernels of the different plant species showed high auto‐ and pairwise‐correlations at small distances (< 50 m). As a result, survival to post‐dispersal seed predation increased with dispersal distance for O. alba and T. communis, but not for C. album. Main conclusions Seed dispersal by lizards was determined primarily by the interaction between the dispersers’ home ranges and the position of the fruit‐bearing plants. As a result, seed rain shared a common template, but showed considerable variation among species, determined by their specific spatial context. Seed predation increased the spatial coherence of the seed rain of the different species, but also resulted in contrasting relationships between seed survival and dispersal distance, which may be of importance for the demographic and evolutionary processes of the plants.  相似文献   

4.
The spatial distribution of plants (and other primarily sessile organisms) depends on the interplay between their ecological requirements and the spatial template set before, during, and after the dispersal process. In the case of animal‐dispersed plants, the spatial characteristics of animal behaviour during the seed dispersal process are likely to leave a lasting imprint on plant distribution. Here, we hypothesize that the activity patterns of the frugivorous lizard Podarcis lilfordi directly influence the spatial distribution of the fleshy‐fruited shrub Daphne rodriguezii. To evaluate this hypothesis, we first analysed lizard activity, following radio‐tracked lizards during the plant's fruiting period, and identified its main determinants at several spatial scales of habitat aggregation (from 12.5 to 150 m). We hypothesised that lizard activity depends on differential habitat features explaining its territory use plus habitat preferences associated with each movement bout. In a second step, the most important determinants of lizard activity plus the variables describing habitat structure were used to predict the presence of adult and juvenile plants. Predictability of lizard activity (based on AUC and Pearson regression coefficients) was higher at broad spatial‐scales of habitat aggregation (75 m). The two best predictors of lizard activity were the habitat features of and the distance to the core area (defined as the area enclosing the 0.50 cumulative probability of lizard locations). Plant presence was best predicted by models based on a combination of lizard activity and habitat features at local spatial scales (1.5 m). Best models included habitat features and lizard activity for adult plants, and local‐scale habitat features, the proximity of adult plants and lizard activity for juveniles. In both cases, most plants (50–60%) were located at ‘optimal sites’ (both favourable for lizards and with adequate habitat features), whereas a small fraction of them (3–10%) were located at dispersal‐limited sites (i.e. with adequate habitat features but suboptimal for lizards). Our results thus suggest that the interplay between lizard activity and local habitat features determines the spatial patterns of juvenile‐plant presence and leaves a lasting signature on adult‐plant distribution.  相似文献   

5.
Background: There is limited understanding about bird dispersal behaviour and seedling distribution of endangered tree species in patchy environments, although these processes are important for plant species persistence.

Aims: We tested how patch features affected bird behaviour and seed dispersal, and thus seedling distribution of the endangered Chinese yew tree (Taxus chinensis).

Methods: In the present study, we combined field data of bird dispersal behaviour and GIS-based information to elucidate the influence of spatial features of habitat patches on bird dispersal behaviour, and the resulting effects on the seedling distribution of the endangered Chinese yew in two patchy habitats.

Results: Our results showed that the only seed source patch could attract eight bird species for dispersal at the two sites. Post-foraging movements of bird dispersers was strongly related to both topography and the relative locations of habitat patches. Yew seedlings aggregated only at the seed source and bamboo recruitment patches, which was affect by both the spatial distribution of recruitment patches and patch use by dispersers.

Conclusions: Our results emphasise that bamboo patches in both patchy environments provide the necessary conditions for germination of yew seeds, and the post-foraging behaviour of dispersers determines seed deposited in these patches. Our study highlights the importance of the dispersal behaviour of frugivorous birds in the successful regeneration and colonisation of yew populations in patchy habitats.  相似文献   

6.
The introduction of carnivorous mammals has led many native island species to extinction. In the Balearic Islands, the introduction of carnivorous mammals in the main islands has contributed to the extinction of the endemic lizard Podarcis lilfordi, which is an important seed disperser of many plant species. One of the introduced mammals, Martes martes (pine marten), is also known to disperse seeds and may replace the native lizard in this role in islands. However, little is known on the patterns of seed dispersal by these two different species and their possible implications for plant regeneration ability and population structure. We have compared the quality of seed deposition provided by both to the vulnerable Mediterranean shrub Cneorum tricoccon, by studying the pattern of seed distribution among sites generated by both dispersers as well as the suitability of those sites for seedling emergence and establishment. The study was carried out in two types of habitats (coastal shrublands and pine forests) and two islands (Mallorca and Dragonera). Lizards and mammals showed contrasting patterns of seed deposition and, where lizards were absent, mammals played their role as seed dispersers in pine forests but not in coastal shrublands. The lack of seed dispersal in the coastal shrubland seriously limits recruitment, by concentrating seeds under conspecifics and hindering colonisation opportunities, marking a long-term trend towards decline. The introduced predator replaces the native seed disperser in its service where it has gone extinct, although with important differences in the dispersal service provided.  相似文献   

7.
Seed dispersal by avian frugivores is one of the key processes influencing plant spatial patterns, but may fail if there is disruption of plant–frugivore mutualisms, such as decline in abundance of dispersers, fragmentation of habitat, or isolation of individual trees. We used simulation model experiments to examine the interaction between frugivore density and behaviour and the spatial arrangement of fruiting plants and its effect on seed dispersal kernels. We focussed on two New Zealand canopy tree species that produce large fruits and are dispersed predominantly by one avian frugivore (Hemiphaga novaeseelandiae). Although the mean seed dispersal distance decreased when trees became more aggregated, there were more frugivore flights between tree clusters, consequently stretching the tails of the dispersal kernels. Conversely, when trees were less aggregated in the landscape, mean dispersal distances increased because seeds were deposited over larger areas, but the kernels had shorter tails. While there were no statistically meaningful changes in kernel parameters when frugivore density changed, decreases in density did cause a proportional reduction in the total number of dispersed seeds. However, birds were forced to move further when fruit availability and fruit ripening were low. Sensitivity analysis showed that dispersal kernels were primarily influenced by the model parameters relating to disperser behaviour, especially those determining attractiveness based on distance to candidate fruiting trees. Our results suggest that the spatial arrangement of plants plays an important role in seed dispersal processes – although tree aggregation curbed the mean seed dispersal distance, it was accompanied by occasional long distance events, and tree dispersion caused an increase in mean dispersal distance, both potentially increasing the probability of seeds finding suitable habitats for germination and growth. Even though low frugivore densities did not cause dispersal failure, there were negative effects on the quantity of seed dispersal because fewer seeds were dispersed.  相似文献   

8.
植物种群更新限制——从种子生产到幼树建成   总被引:8,自引:0,他引:8  
李宁  白冰  鲁长虎 《生态学报》2011,31(21):6624-6632
更新限制是指种子由于各种原因,不能够萌发并生长成幼树。它作为解释生物多样性的理论,一直受到国内外群落生态学家关注。从种源限制、传播限制和建成限制3个角度,对更新限制机制研究进展进行了综述。从种源限制而言,时空因素是影响植物种群更新限制的重要因素,因为植物结实量存在明显时空变化,造成植物更新个体出现明显的时空规律。从传播限制而言,传播数量、距离和食果动物行为均限制植物种群更新。数量上,缺乏有限传播者势必减少传播数量,但如果种子拥有较高质量,则能逃脱数量限制;距离上,植物更新个体显示出明显的Janzen-Connell格局,但传播距离趋向稳定,形成植物种群的进化稳定对策;食果动物行为上,不同传播者对更新贡献存在差异,捕食者直接降低更新,融入两类动物行为的模型更能反映食果动物对更新的限制。从建成限制而言,环境因子制约植物生长。小尺度下,微生境的好坏对于植物幼苗建成至关重要;大尺度下,植物提供较好的广告效应则能摆脱生境限制。将传播者行为、捕食者行为与幼苗的空间分布格局、种子传播机理模型等结合,建立植物更新限制机理模型应是更新限制未来的研究热点。选择稀有种和古老种为主题的长期更新限制研究,为种群恢复提供指导,也是未来重要研究方向。  相似文献   

9.
So far, it is poorly understood how differential responses of avian seed dispersers and fruit predators to changes in habitat structure and fruit abundance along land-use gradients may translate into consequences for the seed dispersal of associated plants. We selected a gradient of habitat modification (forest, semi-natural, and rural habitat) characterized by decreasing tree cover and a high variation in local fruit availability. Along this gradient we quantified fruit removal by avian seed dispersers and fruit predators from 18 Sorbus aucuparia trees. We analyzed the relative importance of tree cover and fruit abundance in explaining species richness, abundance and fruit removal rates of both guilds from S. aucuparia trees. Species richness and abundance of seed dispersers decreased with decreasing tree cover, whereas fruit removal by seed dispersers decreased with decreasing fruit abundance independent of tree cover. Both variables had no effect on species richness, abundance and fruit removal by fruit predators. Consequently, seed dispersers dominated relative fruit removal in fruit-rich sites but the dispersal/predation ratio shifted in favor of predation in fruit-poor habitat patches. Our study demonstrates that variation in local habitat structure and fruit abundance can cause guild-specific responses. Such responses may result in a shift in fruit removal regimes and might affect the dispersal ability of dependent fruiting plants. Future studies should aim at possible consequences for plant recruitment and guild-specific responses of frugivores to disturbance gradients on the level of entire plant–frugivore associations.  相似文献   

10.

Background

Knowledge about how frugivory and seed deposition are spatially distributed is valuable to understand the role of dispersers on the structure and dynamics of plant populations. This may be particularly important within anthropogenic areas, where either the patchy distribution of wild plants or the presence of cultivated fleshy-fruits may influence plant-disperser interactions.

Methodology/Principal Findings

We investigated frugivory and spatial patterns of seed deposition by carnivorous mammals in anthropogenic landscapes considering two spatial scales: ‘landscape’ (∼10 km2) and ‘habitat type’ (∼1–2 km2). We sampled carnivore faeces and plant abundance at three contrasting habitats (chestnut woods, mosaics and scrublands), each replicated within three different landscapes. Sixty-five percent of faeces collected (n = 1077) contained seeds, among which wild and cultivated seeds appeared in similar proportions (58% and 53%) despite that cultivated fruiting plants were much less abundant. Seed deposition was spatially structured among both spatial scales being different between fruit types. Whereas the most important source of spatial variation in deposition of wild seeds was the landscape scale, it was the habitat scale for cultivated seeds. At the habitat scale, seeds of wild species were mostly deposited within mosaics while seeds of cultivated species were within chestnut woods and scrublands. Spatial concordance between seed deposition and plant abundance was found only for wild species.

Conclusions/Significance

Spatial patterns of seed deposition by carnivores differed between fruit types and seemed to be modulated by the fleshy-fruited plant assemblages and the behaviour of dispersers. Our results suggest that a strong preference for cultivated fruits by carnivores may influence their spatial foraging behaviour and lower their dispersal services to wild species. However, the high amount of seeds removed within and between habitats suggests that carnivores must play an important role – often overlooked – as ‘restorers’ and ‘habitat shapers’ in anthropogenic areas.  相似文献   

11.
Anthropogenic habitat alteration may affect the dispersal service provided by avian seed dispersers, ultimately causing regeneration collapse, through a decay in both the quantitative (seed removal) and qualitative (seed arrival to safe sites) components of seed dispersal effectiveness. However, despite its implications for management in real-world landscapes, few studies have investigated the shifts in components of seed dispersal effectiveness resulting from habitat alteration. We advocate the use of stage-specific transition probabilities, combined with data on seed shadows and bird abundance and mobility, for a mechanistic inference of the consequences for recruitment of the disruption of plant-frugivore mutualism in altered habitats. Such an approach allows the identification of regeneration bottlenecks, evaluates the differential contribution to recruitment of quantitative and qualitative components of seed dispersal, and provides the means to compare seed dispersal limitation. We exemplify our conceptual approach with studies of seed dispersal and recruitment in the wild olive tree in unaltered and severely altered adjacent sites. We show that simplification of the habitat substantially affected bird abundance, diversity and mobility, which caused a reduction in fruit removal and a concomitant simplification of the seed shadows compared to the unaltered site. Linked to these shifts, postdispersal seed survival and seedling emergence and survival were affected. The final outcome of habitat alteration was the collapse of the regeneration dynamics with very few seeds escaping the influence of maternal plants and reaching the safest sites for recruitment (dispersal limitation). As predicted, the collapse in the regeneration dynamics resulted from severe decays in the quantitative but especially in the qualitative components of seed dispersal effectiveness. Management of fleshy-fruited plant populations in altered habitats should thus pay attention to landscape elements that promote frugivore abundance, diversity and mobility and that alleviate the dispersal limitation.  相似文献   

12.
Human‐induced fragmentation and disturbance of natural habitats can shift abundance and composition of frugivore assemblages, which may alter patterns of frugivory and seed dispersal. However, despite their relevance to the functioning of ecosystems, plant‐frugivore interactions in fragmented areas have been to date poorly studied. I investigated spatial variation of avian frugivore assemblages and fruit removal by dispersers and predators from Mediterranean myrtle shrubs (Myrtus communis) in relation to the degree of fragmentation and habitat features of nine woodland patches (72 plants). The study was conducted within the chronically fragmented landscape of the Guadalquivir Valley (SW Spain), characterized by ~1% of woodland cover. Results showed that the abundance and composition of the disperser guild was not affected by fragmentation, habitat features or geographical location. However, individual species and groups of resident/migrant birds responded differently: whereas resident dispersers were more abundant in large patches, wintering dispersers were more abundant in fruit‐rich patches. Predator abundances were similar between patches, although the guild composition shifted with fragmentation. The proportion of myrtle fruits consumed by dispersers and predators varied greatly between patches, but did not depend on bird abundances. The geographical location of patches determined the presence or absence of interactions between myrtles and seed predators (six predated and three non‐predated patches), a fact that greatly influenced fruit dispersal success. Moreover, predation rates were lower (and dispersal rates higher) in large patches with fruit‐poor heterospecific environments (i.e. dominated by myrtle). Predator satiation and a higher preference for heterospecific fruits by dispersers may explain these patterns. These results show that 1) the frugivore assemblage in warm Mediterranean lowlands is mostly composed of fragmentation‐tolerant species that respond differently to landscape changes; and 2) that the feeding behaviour of both dispersers and predators influenced by local fruit availability may be of great importance for interpreting patterns of frugivory throughout the study area.  相似文献   

13.
不同空间尺度下的肉果植物扩散过程和机理   总被引:5,自引:2,他引:3  
肉果植物扩散的生态学过程在最近得到生态学者们的广泛关注,其扩散过程包括果实搬运、果实消耗、种子雨、种子取食、种子库动态、萌发和幼苗定居等。许多过程涉及到果食性动物和肉果植物之间的互惠的协同进化关系。对最近15a关于肉果植物扩散的研究论文进行了综述,探讨在生境、微生境、景观和区域等常用的空间尺度上,肉果植物扩散和定居过程的格局与机理。  相似文献   

14.
Habitat fragmentation contributes to the decline of plant species by decreasing gene flow among populations. Restoring connectivity among habitat patches is therefore a major issue for plant conservation. However, deciding where to focus restoration efforts requires identifying suitable dispersers for each target plant species. We collected data from the literature on wild and domesticated ungulates, known to be effective seed dispersers, and on the plants they dispersed in Europe via epi‐ and/or endozoochory. We performed a systematic literature review to identify plant and animal traits relevant for seed dispersal. We first modeled the relationships between epi‐ or endozoochory and a priori selected plant traits (diaspore releasing height, length, shape and morphology, and habitat openness). The differences we underlined between the two dispersal mechanisms justified splitting our analyses accordingly. Then, for each dispersal mechanism, we asked whether basic plant traits could be used to predict specific traits of ungulates as endozoochorous or epizoochorous seed dispersers. We modeled the relationships between a priori selected ungulate traits for epizoochory (habitat openness, shoulder height, hair curliness, and hair length) and for endozoochory (habitat openness, body mass, feeding type and digestive system) and plant traits. Plant habitat openness and diaspore morphology were the predictors that most often explained differences among ungulates for epizoochory, whereas plant habitat openness and diaspore releasing height most often explained differences for endozoochory. Our trait‐based predictive models can help improve our ability to propose more precise management decisions for the conservation of plant populations worldwide by taking into account ungulate dispersers.  相似文献   

15.
This study investigated links between seed production by two species of Miconia (Melastomataceae), whose seeds are dispersed by birds, and later stages of recruitment in lowland forests of eastern Ecuador. Seed dispersal and survival in later stages are crucial for understanding and predicting patterns of plant population dynamics as well as for understanding patterns of diversity in tropical forests. A major goal was to determine if the spatial template of seed deposition established by birds predicted probability of recruitment. We used observational and experimental approaches to compare patterns of recruitment in Miconia fosteri and M. serrulata. We calculated probabilities of transition between successive stages of recruitment for each species in three habitats. The number of plants with fruit, number of fruits removed, and, to a lesser extent, patterns of seed deposition varied between species and among habitats, whereas seed survival, germination, and establishment showed little variation among habitats. The location of seed deposition directly influenced the cumulative probabilities of survival. Among-habitat differences in the probabilities of recruitment set by seed deposition were not modified by later stages, although probability of recruitment was 2.5 times higher for M. serrulata than for M. fosteri after 1 year. The more critical stages for recruitment were seed removal and deposition. Our results from multiple life-cycle stages suggest that habitat associations among plants that reach reproductive maturity become established at early life stages and were mostly a consequence of seed dispersal by birds. These results differ from those obtained in temperate zones and suggest fundamental differences in the importance of recruitment processes. Dispersers, such as manakins, play significant roles in recruitment and population dynamics of M. fosteri, M. serrulata and numerous other understory plants of Neotropical forests. Their role in plant recruitment could be much greater than previously considered in megadiverse tropical forests. Thus, loss of dispersers could have long-term and far-reaching implications for maintenance of diversity.  相似文献   

16.
Pollen and seed dispersal are the two key processes in which plant genes move in space, mostly mediated by animal dispersal vectors in tropical forests. Due to the movement patterns of pollinators and seed dispersers and subsequent complex spatial patterns in the mortality of offspring, we have little knowledge of how pollinators and seed dispersers affect effective gene dispersal distances across successive recruitment stages. Using six highly polymorphic microsatellite loci and parentage analyses, we quantified pollen dispersal, seed dispersal, and effective paternal and maternal gene dispersal distances from pollen‐ and seed‐donors to offspring across four recruitment stages within a population of the monoecious tropical tree Prunus africana in western Kenya. In general, pollen‐dispersal and paternal gene dispersal distances were much longer than seed‐dispersal and maternal gene dispersal distances, with the long‐distance within‐population gene dispersal in P. africana being mostly mediated by pollinators. Seed dispersal, paternal and maternal gene dispersal distances increased significantly across recruitment stages, suggesting strong density‐ and distance‐dependent mortality near the parent trees. Pollen dispersal distances also varied significantly, but inconsistently across recruitment stages. The mean dispersal distance was initially much (23‐fold) farther for pollen than for seeds, yet the pollen‐to‐seed dispersal distance ratio diminished by an order of magnitude at later stages as maternal gene dispersal distances disproportionately increased. Our study elucidates the relative changes in the contribution of the two processes, pollen and seed dispersal, to effective gene dispersal across recruitment. Overall, complex sequential processes during recruitment contribute to the genetic make‐up of tree populations. This highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal‐mediated pollen and seed dispersal on small‐scale spatial genetic patterns of long‐lived tree species.  相似文献   

17.
The loss of largest-bodied individuals within species of frugivorous animals is one of the major consequences of defaunation. The gradual disappearance of large-bodied frugivores is expected to entail a parallel deterioration in seed dispersal functionality if the remaining smaller-sized individuals are not so effective as seed dispersers. While the multiple impacts of the extinction of large bodied species have been relatively well studied, the impact of intraspecific downsizing (i.e. the extinction of large individuals within species) on seed dispersal has rarely been evaluated. Here we experimentally assessed the impact of body-size reduction in the frugivorous lizard Gallotia galloti (Lacertidae), an endemic species of the Canary Islands, on the seed germination patterns of two fleshy-fruited plant species (Rubia fruticosa and Withania aristata). Seed germination curves and the proportions of germinated seeds were compared for both plant species after being defecated by large-sized individuals and small-sized individuals. The data show that seeds of W. aristata defecated by larger-sized lizards germinated faster and in a higher percentage than those defecated by small-sized lizards, while no differences were found for R. fruticosa seeds. Our results suggest that disappearance of the largest individuals of frugivorous species may impair recruitment of some plant species by worsening seed germination. They also warn us of a potential cryptic loss of seed dispersal functionality on defaunated ecosystems, even when frugivorous species remain abundant.  相似文献   

18.
Hunting pressure, fragmentation and deforestation have caused global declines in animal abundance, and the consequences for plant communities are poorly understood. Many large‐seeded plants, for instance, depend on large and endangered vertebrates for seed dispersal. In some Semi‐deciduous Atlantic Forests, endangered tapirs (Tapirus terrestris) are major dispersers of pindó palms (Syagrus romanzoffiana). Here, we compare recruitment patterns of pindó palms between protected and disturbed (defaunated) Atlantic Forest areas in Argentina and evaluate the potential consequences of the lack of the main disperser for pindó palm regeneration. We analyzed the number and spatial pattern of pindó adults, offspring, and tapir dung piles within ten plots established in an area spanning tapir latrines inside Iguazú National Park and in a fragmented forest area outside the park where tapir is locally extinct. In both areas, we evaluated recruitment levels beneath 24 adult palms in circular plots centered on adult stems. We found lower pindó palm recruitment outside the park where offspring tended to be aggregated around adult palms. In contrast, in Iguazú National Park offspring were spatially associated with tapir dung‐piles, in which most offspring were registered. Recruitment under adults was higher outside the park suggesting a lower rate of seed removal in disturbed areas. Our results show that tapir dispersal promotes higher recruitment levels of pindó offspring and shapes their spatial pattern, breaking the spatial association with adult (presumably maternal) palms. These results are useful for predicting the impact of local tapir extinction on this palm.  相似文献   

19.
Ana Mellado  Regino Zamora 《Oecologia》2014,176(1):139-147
Mistletoes constitute instructive study cases with which to address the role of generalist consumers in the study of plant–animal interactions. Their ranges of safe sites for recruitment are among the most restricted of any plant; therefore, frugivores specializing in mistletoe have been considered almost indispensable for the seed dispersal of these parasitic plants. However, the absence of such specialists in numerous regions inhabited by many mistletoe species raises the question of whether unspecialized vectors may successfully disperse mistletoe seeds to narrowly defined safe sites. Using the European mistletoe Viscum album subsp. austriacum as a study case, we recorded a broad range of 11 bird species that disperse mistletoe seeds. For these species, we studied the mistletoe-visitation rate and feeding behavior to estimate the quantity component of dispersal effectiveness, and the post-foraging microhabitat use, seed handling, and recruitment probabilities of different microhabitats as a measure of the quality component of effectiveness. Both endozoochory and ectozoochory are valid dispersal mechanisms, as the seeds do not need to be ingested to germinate, increasing seed-dispersal versatility. Thrushes were the most effective dispersers, although they were rather inefficient, whereas small birds (both frugivores and non-frugivores) offered low-quantity but high-quality services for depositing seeds directly upon safe sites. As birds behave similarly on parasitized and non-parasitized hosts, and vectors have broad home ranges, reinfection within patches and the colonization of new patches are ensured by an ample assemblage of generalist birds. Thus, a parasitic plant requiring precision in seed dispersal can rely on unspecialized dispersers.  相似文献   

20.
Aim We studied how the abundance of the highly invasive fruit‐bearing tree Miconia calvescens DC. influences seed dispersal networks and the foraging patterns of three avian frugivores. Location Tahiti and Moorea, French Polynesia. Methods Our study was conducted at six sites which vary in the abundance of M. calvescens. We used dietary data from three frugivores (two introduced, one endemic) to determine whether patterns of fruit consumption are related to invasive tree abundance. We constructed seed dispersal networks for each island to evaluate how patterns of interaction between frugivores and plants shift at highly invaded sites. Results Two frugivores increased consumption of M. calvescens fruit at highly invaded sites and decreased consumption of other dietary items. The endemic fruit dove, Ptilinopus purpuratus, consumed more native fruit than either of the two introduced frugivores (the red‐vented bulbul, Pycnonotus cafer, and the silvereye, Zosterops lateralis), and introduced frugivores showed a low potential to act as dispersers of native plants. Network patterns on the highly invaded island of Tahiti were dominated by introduced plants and birds, which were responsible for the majority of plant–frugivore interactions. Main conclusions Shifts in the diet of introduced birds, coupled with reduced populations of endemic frugivores, caused differences in properties of the seed dispersal network on the island of Tahiti compared to the less invaded island of Moorea. These results demonstrate that the presence of invasive fruit‐bearing plants and introduced frugivores can alter seed dispersal networks, and that the patterns of alteration depend both on the frugivore community and on the relative abundance of available fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号