首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent experiments suggest that timing of metamorphosis is fixed during development in some anurans, insects, and freshwater invertebrates. Yet, these experiments do not exclude a growth rate optimization model for the timing of metamorphosis. I manipulated food resources available to larvae of squirrel treefrogs (Hyla squirella) to determine if there is a loss of plasticity in duration of larval period during development and to critically test growth rate models for the timing of metamorphosis. Size-specific resource levels for individual tadpoles were switched from low to high or high to low at three developmental stages spaced throughout larval development. The effects of changes in resource availability on larval period and mass at metamorphosis were measured. Switching food levels after late limb bud development did not significantly affect larval period in comparison to constant food level treatments. Therefore, developmental rate in H. squirella is better described by a fixed developmental rate model, rather than a growth rate optimization model. The timing of fixation of developmental rate in H. squirella is similar to that found in other anuran species, suggesting a taxonomically widespread developmental constraint on the plasticity of larval period duration. Mass at metamorphosis was not significantly affected by the timing of changes in food levels; the amount of food available later in development determined the size at metamorphosis. Larval period and mass at metamorphosis were negatively correlated in only one of two experiments, which contrasts with the common assumption of a phenotypic trade-off between decreased larval period and increased mass at metamorphosis. Received: 19 August 1996 / Accepted: 20 June 1997  相似文献   

2.
A. G. Nicieza 《Oecologia》2000,123(4):497-505
Age and size at metamorphosis are two important fitness components in species with complex life cycles. In anurans, metamorphic traits show remarkable phenotypic plasticity, especially in response to changes in growth conditions. It is also possible that the perception of risk directly determines changes in larval period and the size of metamorphs. This study examines how the perception of predation risk affects the timing of and size at metamorphosis in common frogs (Rana temporaria). I raised tadpoles at two risk levels (fish-conditioned water or unconditioned water) crossed with the availability or lack of food at night (all tadpoles had food available in the day). Tadpoles reacted to chemical cues from predatory fish by decreasing activity. A novel behavioural result was a predation×food interaction effect on refuge use, which also accounted for most of the predator main effect: predation risk only caused increased refuge use in the night-starved treatment. Despite these behavioural modifications, the perception of predation risk did not affect growth rate and mass at metamorphosis in a simple way: the effects of food regime on growth and size at metamorphosis were dependent on the level of predation risk as revealed by significant predation×food interaction effects. Tadpoles who had food withheld at night metamorphosed at the smallest size, suggesting a negative relationship between size at metamorphosis and refuge use. Tadpoles raised in fish-conditioned water had longer larval periods than those in unconditioned water, but these differences were significant only if food was available at night. These results conflict with the hypotheses that tadpoles should reduce their larval period or growth rates (and hence metamorphose at a smaller size) as the risk of predation increases. In contrast to predation risk, food availability strongly affected the length of the larval period: night-starved tadpoles metamorphosed relatively early with or without fish stimulus. Thus, early metamorphosis resulted from periods of low food availability, but not from a heightened ”perceived risk” of predation. This example counters the hypothesis of acceleration of the developmental rate (which shortens the time to metamorphosis) as a mechanism to escape a risky environment. Received: 18 August 1999 / Accepted: 10 January 2000  相似文献   

3.
During anticipatory development in lecithotrophic larvae that delay metamorphosis, the growth and differentiation of features of the adult action system continue to develop at a slow pace even though they do not become functional. After metamorphosis occurs, the larger size and advanced development of these components may allow juveniles to initially grow at a faster rate than they normally would. Anticipatory development has been demonstrated in archeogastropods, some solitary ascidians and a hydrozoan. In the gastropod Haliotis and the hydrozoan Phialidium anticipatory development increases the initial growth rate of juveniles. In Haliotis and ascidians all of the larvae of a given female that live long enough exhibit anticipatory development. In Phialidium, the ability of a given female to produce larvae that can exhibit anticipatory development is a maternal polymorphic character. In Haliotis and solitary ascidians that exhibit anticipatory development, it appears to be a slower version of the rapid developmental changes that occur in parts of the adult action system at metamorphosis. In Phialidium, developmental changes in relative sizes of the different presumptive regions of the polyp are slowly altered prior to and independently of metamorphosis. Anticipatory development is not linked to the decrease in the size or nutrient reserves of older larvae but to the length of their larval period. From an evolutionary perspective, the mechanisms that operate during anticipatory development are probably of adaptive significance for lecithotrophic larvae of species that spend variable amounts of time in the water column because of a patchy distribution of appropriate settlement cues. The developmental mechanisms that underlie anticipatory development may have been used during the transition from lecithotrophy to planktotrophy.  相似文献   

4.
Intraspecific variation during the anuran larval period has been analyzed mainly in relation to the timing of metamorphosis and body size at metamorphosis. However, other traits may vary as well. We examined two developmental series of Boana riojana from the same population in two consecutive years and describe intraspecific variation in larvae of this species. We discuss how variation, if present, may influence its life cycle. We found that both larval series differed in the larval period length, one twice as long as the other. This variation primarily depended on when breeding occurred, metamorphosis was achieved during late spring in both generations and at similar sizes, and only the rate of larval development during premetamorphosis varied extensively between years. This is consistent with thyroid gland activity because when it became active the developmental trajectory became more canalized. No variation of staging sequence occurred in relation to the different durations of the larval period. However, in the long-lasting series we found two different morphs. Also, integument, thyroid gland, skeleton, and testis differentiation events occurred at the same developing stages. In contrast, ovarian differentiation proceeded at the same absolute age in both series. Sexual dimorphism becomes evident within the year after metamorphosis. The intraspecific heterochrony that we describe for the larval development of B. riojana does not lead to phenotypic variation at the end of metamorphosis. We discuss the importance of analyzing growth and development independently. Each proceeds differently in time, but with an interdependence at some point, because size and shape do not vary at the end of metamorphosis.  相似文献   

5.
Keith A. Berven 《Oecologia》1982,52(3):360-369
Summary The variation in larval developmental patterns in the wood frog, Rana sylvatica, along an elevation gradient of 1,000 m was experimentally studied. Larval populations at high elevation ponds had lower growth rates, developmental rates and were larger at all stages (including metamorphic climax) than larval populations developing in low elevation ponds. There was considerable variation among ponds within each elevation in both the length of the larval period and size at metamorphic climax. Reciprocal transplant experiments and controlled laboratory experiments revealed that most of the observed variation between high and low elevation populations could be explained by the effects of temperature induction during ontogeny. Significant genetic differences in growth rates and non-genetic maternal effects on developmental rates between larvae of mountain origin and lowland origin were also demonstrated. Selection in both environments has acted to minimize the prevailing environmental effect of pond temperature on developmental rates, but has accentuated the prevailing environmental effects on larval body size. As a consequence mountain larvae were capable of completing metamorphosis sooner and at a larger size in all environments than lowland larvae.  相似文献   

6.
We evaluated differences in larval habitats and life history of three species of spadefoot toads, then compared their life histories in a common garden study. Our field work defined the selective regime encountered by each species. Our Great Basin spadefoot (Spea intermontana) bred asynchronously in permanent streams and springs where there was no risk of larval mortality due to drying. The water chemistry remained fairly stable throughout the larval period. The western spadefoot toad, Sp. hammondii, bred fairly synchronously following heavy spring rains in temporary pools that remained filled an average of 81 d. Fifteen % of the breeding pools dried completely on or before the day the first larvae metamorphosed. The desert spadefoot toad, Scaphiopus couchii, bred synchronously after heavy summer showers in very short duration pools; 62% of the breeding pools dried completely on or before the day the first larvae metamorphosed. The concentration of ammonium nitrogen and CaCO3 increased markedly as the Sp. hammondii and S. couchii pools dried. S. couchii attained metamorphosis at a much earlier age and smaller size than the other two species. S. couchii also showed little variation in the age at metamorphosis but considerable variation in the size at metamorphosis, while the other two species varied in both age and size. The results identify some variables that could serve as cues of pool drying and demonstrate an association between breeding pool duration, breeding synchrony, development rate, and larval development. Our laboratory study yields information about the genetic basis of the differences in development and controlled comparisons of phenotypic plasticity. We manipulated food supply to study the plastic response of age and size at metamorphosis and hence construct the reaction norm for these variables as a function of growth rate. The growth rates ranged from below to above those observed in natural populations. As in the field, in the lab S. couchii attained metamorphosis at an earlier age and smaller size than the other two species. All three species had a similarly shaped reaction norm for size(y‐axis) and age (x‐axis) at metamorphosis, which was a concave upward curve. A consequence of this shape is that age at metamorphosis changes more readily at low levels of food availability and size at metamorphosis changes more readily at high levels of food availability. If we restrict our observations to just those growth rates that are seen in nature, then S. couchii has almost no variation in the age at metamorphosis but considerable variation in size at metamorphosis, while the other two species vary in both age and size at metamorphosis. All three species increased in size at metamorphosis with increased food levels. Our comparative reaction norm approach thus demonstrates that S. couchii has adapted to ephemeral environments by shifting its growth rate reaction norm so that age at metamorphosis is uniformly fast and is not associated with growth rate. The realized variation is concentrated in size rather than age at metamorphosis.  相似文献   

7.
Otolith-based reconstructions of daily larval growth increments were used to examine the effect of variation in larval growth on size and age at settlement and post-settlement growth, survival and habitat preferences of juvenile bicolor damselfish (Stegastes partitus Poey). During August 1992 and 1994, newly settled S. partitus were collected from Montastraea coral heads and Porites rubble piles in Tague Bay, St. Croix, U.S. Virgin Islands (17 degrees 45'N, 64 degres 42' W). Daily lapillar otolith increments from each fish were counted and measured with Optimas image analysis software. S. partitus pelagic larval duration was 23.7 d in 1992 (n = 70) and 24.6 d in 1994 (n = 38) and larval age at settlement averaged 13.0 mm total length both years. Analysis of daily otolith increments demonstrated that variation in larval growth rates and size and age at settlement had no detectable effect on post-settlement survivorship but that larger larvae showed a preference for Montastraea coral at settlement. Late larval and early juvenile growth rates showed a significant positive relationship indicating that growth patterns established during the planktonic stage can span metamorphosis and continue into the benthic juvenile phase. Larval growth rates during the first two weeks post-hatching also had a strong effect on age to developmental competence (ability to undergo metamorphosis) in both 1992 and 1994 with the fastest growing larvae being 8 d younger and 0.8 mm smaller at settlement than the slowest growing larvae. These differential growth rates in early stage larvae established trajectories toward larval developmental competence and may prove important in biogeographical studies of larval dispersal.  相似文献   

8.
To understand the physiological and ecological responses of marine fishes to the change of water temperature, newly-hatched larvae of Yellowtail clownfish Amphiprion clarkii were reared in captivity at water temperatures of 23, 26 and 29 °C till they completed the metamorphosis to juvenile phase, and larval survival, development, growth and feeding were evaluated during the experimental period. The results showed that water temperature influenced the physiological performance of larvae of A. clarkii significantly. The survival and growth rates of larvae of A. clarkii increased significantly with the increase of water temperature from 23 to 29 °C (P < 0.05). Water temperature also influenced larval development of A. clarkii significantly and larvae reared at 23 °C took longer time for post-larval development and metamorphosis compared to 26 and 29 °C (P < 0.05). Total length and body weight for post-larval development and metamorphosis decreased with the increase of water temperature from 23 to 29 °C (P < 0.05). Q10 in developmental rate was higher than in daily growth rate at the same rearing temperature, indicating that at water temperature had greater influence on larval development than on growth. Water temperature also influenced larval feeding of A. clarkii significantly with feed ration (FR) and feed conversion efficiency (FCE) increased with the increase of water temperature from 23 to 29 °C (P < 0.05). There was a positive correlation between FR and specific growth rate (SGR) (P < 0.05) but not between FCE and SGR (P > 0.05), indicating that FR influenced growth rate significantly in larvae of A. clarkii. This study demonstrated that the physiological responses of larvae of A. clarkii to the change of water temperature and confirmed that water temperature influenced larval survival, development, growth and feeding significantly. This study suggests that the decline of larval survival and growth rates, extension of pelagic larval duration and reduction of larval feeding at lower temperature have ecological impacts on larval dispersal and metamorphosis, juvenile settlement and population replenishment in A. clarkii in the wild.  相似文献   

9.
The regulation of body size in animals involves mechanisms that terminate growth. In holometabolous insects growth ends at the onset of metamorphosis and is contingent on their reaching a critical size in the final larval instar. Despite the importance of critical size in regulating final body size, the developmental mechanisms regulating critical size are poorly understood. Here we demonstrate that the developing adult organs, called imaginal discs, are a regulator of critical size in larval Drosophila. We show that damage to, or slow growth of, the imaginal discs is sufficient to retard metamorphosis both by increasing critical size and extending the period between attainment of critical size and metamorphosis. Nevertheless, larvae with damaged and slow growing discs metamorphose at the same size as wild-type larvae. In contrast, complete removal of all imaginal tissue has no effect on critical size. These data indicate that both attainment of critical size and the timely onset of metamorphosis are regulated by the imaginal discs in Drosophila, and suggest that the termination of growth is coordinated among growing tissues to ensure that all organs attain a characteristic final size.  相似文献   

10.
Heterochrony refers to those permutations in timing of differentiation events, and those changes in rates of growth and development through which morphological changes and novelties originate during phyletic evolution. This research analyzes morphological variation during the ontogeny of 18 different anuran species that inhabit semi-arid environments of the Chaco in South America. I use field data, collection samples, and anatomical methods to compare larval growth, and sequences of ontogenetic events. Most species present a similar pattern of larval development, with a size at metamorphosis related to the duration of larval period, and disappearance and transformations of larval features that occur in a short period between forelimb emergence and tail loss. Among these 18 species, Pseudis paradoxa has giant tadpole and long larval development that are the results of deviations of rates of growth. In this species events of differentiation that usually occur at postmetamorphic stages have an offset when tail is still present. Tadpoles of Lepidobatrachus spp. reach large sizes at metamorphosis by accelerate developmental rates and exhibit an early onset of metamorphic features. The uniqueness of the ontogeny of Lepidobatrachus indicates that evolution of anuran larval development may occasionally involve mid-metamorphic morphologies conserving a free feeding tadpole and reduction of the morphological-ecological differences between tadpoles and adults.  相似文献   

11.
Ye L  Yang S Y  Zhu X M  Liu M  Lin J Y  Wu K C 《农业工程》2011,31(5):241-245
To understand the physiological and ecological responses of marine fishes to the change of water temperature, newly-hatched larvae of Yellowtail clownfish Amphiprion clarkii were reared in captivity at water temperatures of 23, 26 and 29 °C till they completed the metamorphosis to juvenile phase, and larval survival, development, growth and feeding were evaluated during the experimental period. The results showed that water temperature influenced the physiological performance of larvae of A. clarkii significantly. The survival and growth rates of larvae of A. clarkii increased significantly with the increase of water temperature from 23 to 29 °C (P < 0.05). Water temperature also influenced larval development of A. clarkii significantly and larvae reared at 23 °C took longer time for post-larval development and metamorphosis compared to 26 and 29 °C (P < 0.05). Total length and body weight for post-larval development and metamorphosis decreased with the increase of water temperature from 23 to 29 °C (P < 0.05). Q10 in developmental rate was higher than in daily growth rate at the same rearing temperature, indicating that at water temperature had greater influence on larval development than on growth. Water temperature also influenced larval feeding of A. clarkii significantly with feed ration (FR) and feed conversion efficiency (FCE) increased with the increase of water temperature from 23 to 29 °C (P < 0.05). There was a positive correlation between FR and specific growth rate (SGR) (P < 0.05) but not between FCE and SGR (P > 0.05), indicating that FR influenced growth rate significantly in larvae of A. clarkii. This study demonstrated that the physiological responses of larvae of A. clarkii to the change of water temperature and confirmed that water temperature influenced larval survival, development, growth and feeding significantly. This study suggests that the decline of larval survival and growth rates, extension of pelagic larval duration and reduction of larval feeding at lower temperature have ecological impacts on larval dispersal and metamorphosis, juvenile settlement and population replenishment in A. clarkii in the wild.  相似文献   

12.
In poecilogony, different types of larvae are produced within the same species. Previous studies have suggested maternal control of the production of larval types; however, it is not clear which factors or mechanisms generate contrasting developmental patterns among siblings. The spionid polychaete Boccardia proboscidea produces within the same capsule adelphophagic larvae that eat nurse eggs and siblings and complete all or most of their development inside the capsule (Type A larvae), and larvae with little growth until they hatch as planktotrophic larvae (Type B larvae). In this study, we manipulated capsule content to explore the factors determining larval type in B. proboscidea and the role of extra‐embryonic maternal nutrition and sib–sib interaction in the developmental fate of offspring. When early larval stages were grown individually in vitro, with nurse eggs as the only food source, some of them remained small, while others continue developing into larger pre‐competent larvae by feeding on nurse eggs. This suggests that larval types in B. proboscidea are determined very early in development and are not solely the product of sib–sib interaction inside the capsule. However, our data also suggest that hatching size variability within larval types of a clutch depends on nurse egg availability. Type B larvae grew normally to metamorphosis when phytoplankton was available, but suffered high rates of cannibalism by Type A larvae. These results are consistent with the hypothesis that individual larval fates are determined very early in development and that once their fate is determined, hatching size and intracapsular survival are affected by maternal food provisioning and sibling interaction.  相似文献   

13.
Abstract. The morphology of marine invertebrate larvae is strongly correlated with egg size and larval feeding mode. Planktotrophic larvae typically have suites of morphological traits that support a planktonic, feeding life style, while lecithotrophic larvae often have larger, yolkier bodies, and in some cases, a reduced expression of larval traits. Poecilogonous species provide interesting cases for the analysis of early morphogenesis, as two morphs of larvae are produced by a single species. We compared morphogenesis in planktotrophic and lecithotrophic morphs of the poecilogonous annelid Streblospio benedicti from the trochophore stage through metamorphosis, using observations of individuals that were observed alive, with scanning electron microscopy, or in serial sections. Offspring of alternate developmental morphs of this species are well known to have divergent morphologies in terms of size, yolk content, and the presence of larval bristles. We found that some phenotypic differences between morphs occur as traits that are present in only one morph (e.g., larval bristles, bacillary cells on the prostomium and pygidium), but that much of the phenotypic divergence is based on heterochronic changes in the differentiation of shared traits (e.g., gut and coelom). Tissue and organ development are compared in both morphs in terms of their structure and ontogenetic change throughout early development and metamorphosis.  相似文献   

14.
Anuran larvae exhibit high levels of phenotypic plasticity in growth and developmental rates in response to variation in temperature and food availability. We tested the hypothesis that alteration of developmental pathways during the aquatic larval stage should affect the postmetamorphic performance of the Iberian painted frog (Discoglossus galganoi). We exposed tadpoles to different temperatures and food types (animal- vs. plant-based diets) to induce variation in the length of the larval period and body size at metamorphosis. In this species, larval period varied with temperature but was unaffected by diet composition. In contrast, size at metamorphosis was shaped by the interaction between food quality and temperature; tadpoles fed on an animal-based diet became bulkier metamorphs than those fed on plant-based food at high (22°C) but not at low (12°C) temperature. Body condition of newly metamorphosed frogs was unrelated to the temperature or food type experienced during the premetamorphic stage. Frogs maintained at high temperature during the larval period showed reduced jumping ability, especially when fed on the plant-based diet. However, when considering size-independent jumping ability, cold-reared individuals exhibited the lowest performance, and herbivores reared at 17°C the highest. Cold-reared (12°C) frogs accumulated larger amounts of energy reserves than individuals raised at 17°C or 22°C. This was still the case after correction for differences in body mass, thus indicating some size-independent effect of developmental temperature. Despite the higher lipid content of the carnivorous diet, the differences in energy reserves between herbivores and carnivores were relatively weak and associated with differences in body size. These results suggest that the consequences of environmental variation in the larval habitat can extend to the terrestrial phase and influence juvenile growth and survival.  相似文献   

15.
1. Some organisms under variable predator pressure show induced antipredator defences, whose development incurs costs and may be associated with changes to later performance. This may be of especial relevance to animals with complex life histories involving metamorphosis. 2. This study examines the effect of predation environment, experienced both during embryonic and larval stages, on palmate newt (Triturus helveticus) metamorphosis. Newt eggs were raised until hatching with or without exposure to chemical cues from brown trout (Salmo trutta), and larval development was monitored in the presence or absence of the cues. 3. Exposure to predator cues during the embryonic stage resulted in higher growth rates at the larval stage, reduced time to metamorphosis and size at metamorphosis. Metamorphs also had narrower heads and shorter forelimbs than those from predator‐free treatments. In contrast, exposure to predator cues during the larval stage did not affect metamorph characteristics. 4. These results indicate that developing embryos are sensitive to predator chemical cues and that the responses can extend to later stages. Reversion of induced defences when predation risk ceased was not detected. We discuss the possible adaptive significance of these responses.  相似文献   

16.
Summary Although inter- and intraspecific variation in egg size among amphibians has been well documented, the relationship between egg size and fitness remains unclear. Recent attempts to correlate egg size intraspecifically with larval developmental patterns have been equivocal. In this study the development of larvae derived from large eggs and small eggs, from a single population in Maryland were compared under a range of food levels and larval population densities. Both food level and density had significant effects on the length of the larval period and size at metamorphosis. However, the response among larvae derived from different egg sizes was not additive. At low densities and high food levels, larvae from small eggs had longer larval periods and a larger size at metamorphosis than larvae derived from large eggs. In contrast, at high densities larvae from small eggs had longer developmental periods but were smaller at metamorphosis than larvae from large eggs. In addition, larvae from small eggs were more sensitive to density irrespective of food level. These results suggest that optimal egg size is correlated with environmental factors, which may explain the maintenance of both geographic and within population variation in egg size commonly observed in amphibians.  相似文献   

17.
For a variety of species, changes in the expression of heat shock proteins (HSP) have been linked to key developmental changes, i.e., gametogenesis, embryogenesis, and metamorphosis. Many marine invertebrates are known to have a biphasic life cycle where pelagic larvae go through settlement and metamorphosis as they transition to the benthic life stage. A series of experiments were run to examine the expression of heat shock protein 70 (HSP 70) during larval and early spat (initial benthic phase) development in the Eastern oyster, Crassostrea virginica. In addition, the impact of thermal stress on HSP 70 expression during these early stages was studied. C. virginica larvae and spat expressed three HSP 70 isoforms, two constitutive, HSC 77 and HSC 72, and one inducible, HSP 69. We found differences in the expression of both the constitutive and inducible forms of HSP 70 among larval and early juvenile stages and in response to thermal stress. Low expression of HSP 69 during early larval and spat development may be associated with the susceptibility of these stages to environmental stress. Although developmental regulation of HSP 70 expression has been widely recognized, changes in its expression during settlement and metamorphosis of marine invertebrates are still unknown. The results of the current study demonstrated a reduction of HSP 70 expression during settlement and metamorphosis in the Eastern oyster, C. virginica.  相似文献   

18.
It is often proposed that the morphometric shape of animals often evolves as a correlated response to selection on life-history traits such as whole-body growth and differentiation rates. However, there exists little empirical information on whether selection on rates of growth or differentiation in animals could generate correlated response in morphometric shape beyond that owing to the correlation between these rates and body size. In this study genetic correlations were estimated among growth rate, differentiation rate, and body-size-adjusted head width in the green tree frog, Hyla cinerea. Head width was adjusted for size by using the residuals from log-log regressions of head width on snout-vent length. Size-adjusted head width at metamorphosis was positively genetically correlated with larval period length. Thus, size-independent shape might evolve as a correlated response to selection on a larval life-history trait. Larval growth rate was not significantly genetically correlated with size-adjusted head width. An additional morphometric trait, size-adjusted tibiofibula length, had a nonnormal distribution of breeding values, and so was not included in the analysis of genetic correlations (offspring from one sire had unusually short legs). This result is interesting because, although using genetic covariance matrices to predict long-term multivariate response to selection depends on the assumption that all loci follow a multivariate Gaussian distribution of allelic effects, few data are available on the distribution of breeding values for traits in wild populations. Size at metamorphosis was positively genetically correlated with larval period and larval growth rate. Quickly growing larvae that delay metamorphosis therefore emerge at a large size. The genetic correlation between larval growth rate and juvenile (postmetamorphic) growth rate was near zero. Growth rate may therefore be an example of a fitness-related trait that is free to evolve in one stage of a complex life cycle without pleiotropic constraints on the same trait expressed in the other stage.  相似文献   

19.
The effects of head shape variation on growth and metamorphosis in larval salamander (Hynobius retardatus) were examined by a laboratory experiment and a field experiment. In the laboratory experiment, each larva was fed equal amounts and was prevented from accessing others in both the solitary and group treatments, although chemical cues could be transmitted through water in the group treatment. The relative head width of larvae became larger in the group treatment during the early periods but having a large head width did not finally influence growth rate and days for metamorphosis. In the field experiment, larvae were allowed to contact each other directly in two density conditions. The enlarged relative head width was linked to high growth rate in the high-density treatment but not in the low-density treatment. The larval body size distribution in the high-density condition tended to be smaller, and there was a small proportion of large-sized individuals with a broad head width. Moreover, the small number of large larvae metamorphosed much earlier than the others. The mortality of larvae in high-density conditions was much higher than that in the low-density treatments. This would be a consequence of cannibalism in the high-density condition. From the experimental results obtained, it is argued that for the larvae of H. retardatus having a large head is an adaptive tactic that maximizes fitness, particularly in temporary ponds with an unpredictable environment and in crowded conditions.  相似文献   

20.
Summary When eggs ofTrichoplusia ni (Lepidoptera) are stung by a parasitic wasp,Chelonus sp., the developing host larvae precociously initiate metamorphosis ten days later. Precocious initiation of metamorphosis occurs even in ‘pseudoparasitized’ stung hosts which contain no living parasites at the time of symptoms of host regulation by the parasite. In feeding, penultimate instar, pseudoparasitized hosts, the corpora allata activity, hemolymph juvenile hormone esterase activity, in vivo rates of juvenile hormone metabolism and changes in hemolymph protein composition all follow the pattern of the normal last instar. This and other evidence suggests the entire developmental pattern of the last larval instar is precociously expressed in penultimate instar, pseudoparasitized hosts. The cause of precocious expression of the developmental program leading to metamorphosis is a significant decrease in the critical size parameter that, in normal larvae, signals attainment of the last instar. The induction, in preultimate instar larvae, of the entire feeding stage developmental program leading to metamorphic commitment, using either biochemical, surgical or parasitic experimental probes, has not been previously reported. The results have important implications for the study of host-parasite endocrine interaction, of normal insect metamorphosis and even of human puberty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号