首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Glioma incidence rates in the United States are near 20000 new cases per year, with a median survival time of 14.6 mo for high-grade gliomas due to limited therapeutic options. The origins of these tumors and their many subtypes remain a matter of investigation. Evidence from mouse models of glioma and human clinical data have provided clues about the cell types and initiating oncogenic mutations that drive gliomagenesis, a topic we review here. There has been mixed evidence as to whether or not the cells of origin are neural stem cells, progenitor cells or differentiated progeny. Many of the existing murine models target cell populations defined by lineage-specific promoters or employ lineage-tracing methods to track the potential cells of origin. Our ability to target specific cell populations will likely increase concurrently with the knowledge gleaned from an understanding of neurogenesis in the adult brain. The cell of origin is one variable in tumorigenesis, as oncogenes or tumor suppressor genes may differentially transform the neuroglial cell types. Knowledge of key driver mutations and susceptible cell types will allow us to understand cancer biology from a developmental standpoint and enable early interventional strategies and biomarker discovery.  相似文献   

2.
Parsons BL 《Mutation research》2008,659(3):232-247
Few ideas have gained such strong acceptance in the scientific community as the monoclonal origin of tumors; the idea that tumors start with a single mutated cell (or a single clone of cells) that go on to accumulate additional mutations as a tumor develops. The certainty with which this concept is held by the scientific community reflects the length of time it has been unchallenged and the experimental difficulty in obtaining direct evidence to the contrary. Yet, recent findings regarding X chromosome inactivation patch size indicate that the X-linked marker data previously interpreted as evidence of monoclonal tumor origin is actually more consistent with polyclonal tumor origin, a situation where two or more cells or clones of cells interact to initiate a tumor. Although most tumors show homotypy for X-linked markers (as expected given the bias conferred by X chromosome inactivation patch size), the literature contains numerous examples of tumors with X-linked marker heterotypy, examples of which encompass 24 different tumor types. Chimeric models have yielded direct unequivocal demonstrations of polyclonality in rodent and human tumors. Also, mutational data are consistent with polyclonal tumor origin. Methods that analyze levels of tumor-associated oncogene and tumor suppressor gene mutations demonstrate that initiated cells are much more common in normal tissues than previously realized. Also, while tumors have higher levels of mutation than normal tissues, oncogenic mutations frequently are present as subpopulations within tumors, rather than as the pure mutant populations expected to develop from a single initiated cell. Understanding the mutational basis of tumor etiology has important practical significance for assessing cancer risk, as well as in modeling and treating cancer. Therefore, the scientific community needs to re-examine this issue and consider the implications of polyclonal origin for, perhaps, a majority of tumors, encompassing many different tumor types.  相似文献   

3.
Primary glioblastomas are subdivided into several molecular subtypes. There is an ongoing debate over the cell of origin for these tumor types where some suggest a progenitor while others argue for a stem cell origin. Even within the same molecular subgroup, and using lineage tracing in mouse models, different groups have reached different conclusions. We addressed this problem from a combined mathematical modeling and experimental standpoint. We designed a novel mathematical framework to identify the most likely cells of origin of two glioma subtypes. Our mathematical model of the unperturbed in vivo system predicts that if a genetic event contributing to tumor initiation imparts symmetric self-renewing cell division (such as PDGF overexpression), then the cell of origin is a transit amplifier. Otherwise, the initiating mutations arise in stem cells. The mathematical framework was validated with the RCAS/tv-a system of somatic gene transfer in mice. We demonstrated that PDGF-induced gliomas can be derived from GFAP-expressing cells of the subventricular zone or the cortex (reactive astrocytes), thus validating the predictions of our mathematical model. This interdisciplinary approach allowed us to determine the likelihood that individual cell types serve as the cells of origin of gliomas in an unperturbed system.  相似文献   

4.
The isolation and characterization of lung stem and progenitor cells represent an important step towards the understanding of lung repair after injury, lung disease pathogenesis and the identification of the target cells of transformation in lung carcinogenesis. Different approaches using prospective isolation of progenitor cells by flow cytometry or lineage-tracing experiments in mouse models of lung injury have led to the identification of distinct progenitor subpopulations in different morphological regions of the adult lung. Genetically defined mouse models of lung cancer are offering new perspectives on the cells of origin of different subtypes of lung cancer. These mouse models pave the way to further investigate human lung progenitor cells at the origin of lung cancers, as well as to define the nature of the lung cancer stem cells. It will be critical to establish the link between oncogenic driver mutations recently discovered in lung cancers, target cells of transformation and subtypes of lung cancers to enable better stratification of patients for improved therapeutic strategies.  相似文献   

5.
Melanoma, a lethal malignancy that arises from melanocytes, exhibits a multiplicity of clinico-pathologically distinct subtypes in sun-exposed and non-sun-exposed areas. Melanocytes are derived from multipotent neural crest cells and are present in diverse anatomical locations, including skin, eyes, and various mucosal membranes. Tissue-resident melanocyte stem cells and melanocyte precursors contribute to melanocyte renewal. Elegant studies using mouse genetic models have shown that melanoma can arise from either melanocyte stem cells or differentiated pigment-producing melanocytes depending on a combination of tissue and anatomical site of origin and activation of oncogenic mutations (or overexpression) and/or the repression in expression or inactivating mutations in tumor suppressors. This variation raises the possibility that different subtypes of human melanomas (even subsets within each subtype) may also be a manifestation of malignancies of distinct cells of origin. Melanoma is known to exhibit phenotypic plasticity and trans-differentiation (defined as a tendency to differentiate into cell lineages other than the original lineage from which the tumor arose) along vascular and neural lineages. Additionally, stem cell-like properties such as pseudo-epithelial-to-mesenchymal (EMT-like) transition and expression of stem cell-related genes have also been associated with the development of melanoma drug resistance. Recent studies that employed reprogramming melanoma cells to induced pluripotent stem cells have uncovered potential relationships between melanoma plasticity, trans-differentiation, and drug resistance and implications for cell or origin of human cutaneous melanoma. This review provides a comprehensive summary of the current state of knowledge on melanoma cell of origin and the relationship between tumor cell plasticity and drug resistance.  相似文献   

6.
The gene targeting techniques used to modify chromosomes in mouse embryonic stem cells have had limited success with many other cell types, especially normal primary cells with restricted growth capacity outside the organism. This is due in large part to the technical problems and/or inefficiency of conventional DNA transfer methods, as well as the low rates of homologous recombination obtained in unselected cell populations. We recently described an alternative approach in which adeno-associated virus (AAV) vectors were used to modify homologous chromosomal sequences, and targeting rates close to 1% were observed at the single copy hypoxanthine phosphoribosyl transferase (HPRT) locus in normal human cells (D. W. Russell and R. K. Hirata, Nat. Genet. 18:325-330, 1998). Here we report experiments in which we used a retroviral shuttle vector system to introduce and characterize target loci in human chromosomes, and demonstrate that AAV vectors can correct several types of mutations with high fidelity, independent of chromosomal position. The gene targeting rates varied depending on the type of mutation being corrected, implicating cellular mismatch recognition functions in the reaction. Since AAV vectors can efficiently deliver DNA to many cell types both in vivo and ex vivo, our results suggest that AAV-mediated gene targeting will have wide applicability, including therapeutic gene correction.  相似文献   

7.
Efforts to develop culture technologies capable of eliciting robust human blood stem cell growth have met with limited success. Considering that adult stem cell cultures are complex systems, comprising multiple cell types with dynamically changing intracellular signalling environments and cellular compositions, this is not surprising. Typically treated as single-input single-output systems, adult stem cell cultures are better described as complex, non-linear, multiple-input multiple-output systems wherein the proliferation of subpopulations of cells leads to the formation of intercellular endogenously secreted protein interaction networks. Genomic and proteomic tools need to be applied to generate high-throughput (and ideally high-content) biological measurements of stem cell culture evolution. Datasets describing cellular interaction networks need to be integrated into predictive models of in vitro stem cell development. Ultimately, such models will serve as a starting point for the rational design of blood stem cell expansion bioprocesses utilizing dynamic system perturbations to achieve the preferential expansion of target cell populations.  相似文献   

8.
Current load-bearing orthopaedic implants are produced in 'bio-inert' materials such as titanium alloys. When inserted into the reamed bone during hip or knee replacement surgery the implants interact with mesenchymal populations including the bone marrow. Bio-inert materials are shielded from the body by differentiation of the cells along the fibroblastic lineage producing scar tissue and inferior healing. This is exacerbated by implant micromotion, which can lead to capsule formation. Thus, next-generation implant materials will have to elicit influence over osteoprogenitor differentiation and mesenchymal populations in order to recruit osteoblastic cells and produce direct bone apposition onto the implant. A powerful method of delivering cues to cells is via topography. Micro-scale topography has been shown to affect cell adhesion, migration, cytoskeleton, proliferation and differentiation of a large range of cell types (thus far all cell types tested have been shown to be responsive to topographical cues). More recent research with nanotopography has also shown a broad range of cell response, with fibroblastic cells sensing down to 10 nm in height. Initial studies with human mesenchymal populations and osteoprogenitor populations have again shown strong cell responses to nanofeatures with increased levels of osteocalcin and osteopontin production from the cells on certain topographies. This is indicative of increased osteoblastic activity on the nanotextured materials. Looking at preliminary data, it is tempting to speculate that progenitor cells are, in fact, more responsive to topography than more mature cell types and that they are actively seeking cues from their environment. This review will investigate the range of nanotopographies available to researchers and our present understanding of mechanisms of progenitor cell response. Finally, it will make some speculations of the future of nanomaterials and progenitor cells in tissue engineering.  相似文献   

9.
Animal models of carcinoma of the pancreas provide new information regarding the pathways for histogenesis of the tumors. Four models, induced by chemical carcinogens or transgenic methods, are reviewed briefly from this perspective. Recent reports indicate that carcinomas with a ductal phenotype can arise from transformed acinar cells in rodents. A transgenic mouse model provides evidence that anaplastic carcinomas and islet cell tumors may arise from primitive cells that express the elastase gene, yet retain the potential to differentiate as islet cells. In a nitrosamine-induced hamster model, ductal carcinomas appear to arise directly from ductal cells. Carcinomas in this model contained mutations in the c-K-ras oncogene that are similar to those reported in about 75 percent of human pancreatic carcinomas, whereas acinar cell carcinomas of rats lacked this mutation. The histologic type of a carcinoma may reflect the cell of origin, but this statement is not always true. Therefore, classification of tumors on the basis of phenotype rather than on the presumed cell of origin is recommended. Among the animal models, the carcinomas in hamster pancreas rank as most similar to human pancreatic ductal adenocarcinomas in regard to the phenotype of the tumors and the prevalence of the c-K-ras mutation.  相似文献   

10.
The effector mechanism of skin allograft rejection has been characterized as Ag specific, rejecting cells that express the target alloantigen but sparing those that do not. However, the rejection of MHC class II disparate skin grafts, in which very few cells (Langerhans cells) actually express the target Ia Ag could conceivably proceed by either one of two distinct rejection mechanisms. One possibility is that Ia- cells are destroyed by a sequence of events in which CD4+ T cells, activated by Ia+ LC, elaborate soluble factors that are either directly cytolytic or that recruit and activate non-specific effector cells. The alternative possibility is that activated CD4+ T cells elaborate soluble factors which induce Ia expression on Ia- cell populations, and that these Ia+ cells are subsequently destroyed by effector cells specific for the induced Ia alloantigens. We found that rejection of Ia+ LC was not of itself sufficient to cause rejection of skin grafts, indicating that skin allograft rejection is contingent on the destruction not only of LC but of other graft cell populations as well. We then investigated whether CD4+ T cells rejected allogeneic skin grafts in an antigen specific fashion. To do so, we engrafted immunoincompetent H-2b nude mice with trunk skin grafts from B6----A/J allophenic mice because such skin is composed of mutually exclusive cell populations expressing either H-2a or H-2b histocompatibility Ag, but not both. The engrafted mice were subsequently reconstituted with H-2b CD4+ T cells. The CD4+ T cells destroyed keratinocytes of A/J origin but spared keratinocytes of B6 origin, even though neither cell population constitutively expresses target IAk alloantigen. The targeted rejection of A/J keratinocytes but not of B6 keratinocytes indicates that the target Ia alloantigen must have been induced on Ia- A/J keratinocytes, rendering them susceptible to destruction by anti-Iak-specific CD4+ effector cells. These data demonstrate that CD4+ T cell rejection of skin allografts is mediated by Ag-specific CD4+ cytolytic T cells and hence, requires the induction of target Ia alloantigens on epidermal cells within the graft.  相似文献   

11.
During development neural crest cells give rise to a wide variety of specialized cell types in response to cytokines from surrounding tissues. Depending on the cranial-caudal level of their origin, different populations of neural crest cells exhibit differential competence to respond to these signals as exemplified by the unique ability of cranial neural crest to form skeletal cell types. We show that in addition to differences in whether they respond to particular signals, cranial neural crest cells differ dramatically from the trunk neural crest cells in how they respond to specific extracellular signals, such that under identical conditions the same signal induces dissimilar cell fate decisions in the two populations in vitro. Conversely, the same differentiated cell types are induced by different signals in the two populations. These in vitro differences in neural crest response are consistent with in vivo manipulations. We also provide evidence that these differences in responsiveness are modulated, at least in part, by differential expression of Hox genes within the neural crest.  相似文献   

12.
Cell fate mapping techniques which can label clonal cell lineages are of importance because they allow one to investigate the distribution and types of daughter cells arising from single precursor cells. Thus, the potential of precursor cells to generate various types of descendent cells can be studied at the single-cell level. The stop-EGFP transgenic mouse carries a premature stop codon-containing enhanced green fluorescent protein (EGFP) gene as a target gene for mutations. A cell having undergone a mutation at the premature stop codon and its descendant cell lineage will express EGFP, thus a clonal cell lineage can be traced in vivo using a fluorescent microscope. Using the stop-EGFP mouse, stem cell clonal lineages in the mouse dorsal epidermis can be investigated in vivo and repeated analyses of the same cell lineages can be performed over time. In vivo imaging studies possible with the stop-EGFP mouse provide new insights into the structure of epidermal proliferative units (EPUs). The stop-EGFP system provides a novel tool for investigating clonal cell lineages in developmental studies as well as in stem cell biology.  相似文献   

13.
Knowledge of the target cells is fundamental to maximise efficiency in attempts at immortalisation of specific cell types. It is also important to optimise the primary cell culture system to promote the survival of the target cell population. Other important factors that may influence the success in obtaining immortalised cells include the toxicity and efficiency of the immortalisation procedure. These can be assessed experimentally and if necessary appropriate techniques can be employed to purify the target cells. When cell lines have been established it is vital to assess them at an early stage for desired scientific and practical features as well as determining their stability and life-span. Furthermore, early characterisation of cell line authenticity (e.g. genetic characters, species of origin) and quality control testing will avoid wasted time and resources should contamination with micro-organisms or another cell line occur. Establishing a programme of immortalisation is a serious undertaking that should only be considered when there are no candidate continuous cell lines available. However, new approaches to modify the biology of cells to give extended life-span, whilst retaining the characteristics of differentiated cells in vivo, will hopefully provide valuable new substrates for in vitro toxicology.  相似文献   

14.
15.
A multistage mathematical model of tumorigenesis has been developed to explore the effects of target cell growth pattern on the proportions of tumours deriving from different tissues (the tumour spectrum). Analytical modelling techniques have shown that the effect of the target cell growth pattern on the tumour spectrum also depends on the number of stages (gene mutations) necessary for malignant change in cells of each tissue type. This suggests the existence of temporal "windows of opportunity" for tumours of different types in relation to stage number and growth kinetics. Models of this kind are applicable to cancer-prone transgenic (e.g. p53 deficient) mice, where homozygotes and heterozygotes differ in one carcinogenic stage, and differ also in the spectrum of tumours observed. Generally, tumours deriving from target stem cells which are developmentally short-lived will arise more frequently in homozygotes than heterozygotes. Such models may also be applicable to human syndromes (e.g. Li-Fraumeni) in which susceptibility to cancer is inherited.  相似文献   

16.
Diphtheria toxin can be used to selectively kill target cells by coupling it to cell-type-specific binding moieties such as monoclonal antibodies. These reagents have important potential in treating diseases, selectively ablating cell populations in experimental systems and for understanding how proteins cross membranes. Point mutations and deletions in the diphtheria toxin gene have been used to identify and localize regions of diphtheria toxin involved in cell killing. Mutations have been identified that prevent binding of the toxin to a cell surface receptor yet these mutations do not inhibit the cell entry activity or the intracellular cytotoxicity of the toxin. Coupling of these mutant toxins to new, cell-type-specific binding moieties yields potent reagents with up to 200,000-fold selectivity between target and nontarget cells. Mutations and deletions in the membrane transport regions are beginning to explain how the toxin enters cells and may also help in the design of more effective therapeutic reagents.  相似文献   

17.
Using a particular model of apoptosis, we here demonstrate the ability of the comet assay to differentiate between different cell populations. In our study, the natural killer Kurloff cells, used as effector cells, recognize and bind to the tumoral L2C target cells. Formation of such conjugates leads to the death of the target cells by apoptosis, as previously described by different conventional techniques. With the alkaline comet assay, a conjugate could directly be visualized as an association of an undamaged cell joined to a highly damaged cell. The modified comet assay used in this study comprises specific labelling of Kurloff cells with immunomagnetic beads, which are visible as grey-dull spheres against the bright-red staining of nuclear origin on the comet preparation. The use of such labelled effector cells suggest the potential of the comet assay to visually identify different cell populations in an unique test.  相似文献   

18.
The epidermal growth factor receptor (EGFR) is activated by many ligands and belongs to a family of tyrosine kinase receptors, including ErbB2, ErbB3, and ErbB4. These receptors are de-regulated in many human tumors, and EGFR amplification, overexpression, and mutations are detected at a high frequency in carcinomas and glioblastomas, which are tumors of epithelial and glial origin, respectively. From the analysis of EGFR-deficient mice, it seems that the cell types mostly affected by the absence of EGFR are epithelial and glial cells, the same cell types where the EGFR is found to be overexpressed in human tumors. Therefore, it is important to define molecularly the function of EGFR signaling in the development of these cell types, because this knowledge will be of fundamental importance to understand how aberrant EGFR signaling can lead to tumor formation and progression. A molecular understanding of the pathways that control the development of a given tissue or cell type will also provide the basis for developing better combination therapies targeting different key components of the EGFR signaling network in the respective cancerous cells. Here, we will review the current knowledge, mostly derived from the analysis of genetically modified mice and cells, about the function of the EGFR in specific organs and tissues and in sites where the EGFR is found to be overexpressed in human tumors.  相似文献   

19.
Type 1 diabetes mellitus has received much attention recently as a potential target for the emerging science of stem cell medicine. In this autoimmune disease, the insulin-secreting beta-cells of the pancreas are selectively and irreversibly destroyed by autoimmune assault. Advances in islet transplantation procedures now mean that patients with the disease can be cured by transplantation of primary human islets of Langerhans. A major drawback in this therapy is the availability of donor islets, and the search for substitute transplant tissues has intensified in the last few years. This review will describe the essential requirements of a material designed as a replacement beta-cell and will look at the potential sources of such replacements. These include embryonic stem (ES) cells and multipotent adult stem/progenitor cells from a range of tissues including the pancreas, intestine, liver, bone marrow and brain. These stem cell populations will be evaluated and the different experimental approaches that have been employed to derive functional insulin-expressing cells will be discussed. The review will also look at the capability of human ES (hES) cells generated by somatic cell nuclear transfer and some adult stem cell populations such as bone marrow-derived stem cells, to offer autologous transplant material that would remove the need for immunosuppression. In patients with Type 1 diabetes, auto-reactive T-cells are programmed to recognise the insulin-producing beta-cells. As a result, for therapeutic replacement tissues, it may be more sensible to derive cells that behave like beta-cells but are immunologically distinct. Thus, the potential of cells derived from non-beta-cell origin to avoid the autoimmune response will also be discussed. Finally, the review will summarise the future prospects for stem cell therapies for diabetes and will highlight some of the problems that may be faced by researchers working in this area, such as malignancy, irreproducible differentiation strategies, immune-system rejection and social and ethical concerns over the use of hES cells.  相似文献   

20.
How limited is the ability of stem cells to generate gametes or differentiated somatic cells? Recent outcomes of research with stem cells from both embryonic and adult origin will be discussed with particular attention to results that challenge conventional wisdom about the presence of reproductive stem cells in adults and the plasticity of adult stem cell types. The ability of embryonic germ cells, primordial germ cells, oogonia, gonocytes and spermatogonial stem cells to differentiate or dedifferentiate into overlapping cell types is described as well as the implications of generating differentiated somatic cells of multiple lineages from adult reproductive stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号