首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
2.
3.
A series of microarray analyses employing the expressed sequence tags (ESTs) of hot pepper was conducted in an effort to elucidate the molecular mechanisms inherent to hypersensitive response (HR) by viral or bacterial pathogens. There were 2535 ESTs exhibiting differential expression (over 2-fold changes) among about 5000 ESTs during viral or bacterial response. Further, via virus-induced gene silencing (VIGS) and TMV-infection studies, we were able to isolate several ESTs, which may be relevant to defense response against TMV. Of these ESTs, Capsicum annuum fatty acid desaturase 1 (CaFAD1) showed the distinct phenotype against TMV infection and thus was subjected to further study. CaFAD1-silenced plants showed weaker resistance against TMV-P0 infection compared to TRV2 control plants. Also the suppression of FAD1 expression caused blocking of cell death induced by Bcl2-associated X (Bax) protein in tobacco plants. Therefore, this report presents that both microarray and VIGS approaches are feasible in hot pepper plants and the TMV-induced CaFAD1 plays a role in HR response.  相似文献   

4.
Virus-induced gene silencing in tomato fruit   总被引:16,自引:0,他引:16  
Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants. Here we report that either by syringe-infiltrating the tobacco rattle virus (TRV)-vector into the surface, stem or carpopodium of a tomato fruit attached to the plant or by vacuum-infiltrating into a tomato fruit detached from the plant, TRV can efficiently spread and replicate in the tomato fruit. Although VIGS can be performed in tomato fruit by all of the means mentioned above, the most effective method is to inject the TRV-vector into the carpopodium of young fruit attached to the plant about 10 days after pollination. Several reporter genes related to ethylene responses and fruit ripening, including LeCTR1 and LeEILs genes, were also successfully silenced by this method during fruit development. In addition, we found that the silencing of the LeEIN2 gene results in the suppression of tomato fruit ripening. The results of our study indicate that the application of VIGS techniques by the described methods can be successfully applied to tomato fruit and is a valuable tool for studying functions of the relevant genes during fruit developing.  相似文献   

5.
Ethylene governs a range of developmental and response processes in plants. In Arabidopsis thaliana, the Raf-like kinase CTR1 acts as a key negative regulator of ethylene responses. While only one gene with CTR1 function apparently exists in Arabidopsis, we have isolated a family of CTR1- like genes in tomato ( Lycopersicon esculentum ). Based on amino acid alignments and phylogenetic analysis, these tomato CTR1- like genes are more similar to Arabidopsis CTR1 than any other sequences in the Arabidopsis genome. Structural analysis reveals considerable conservation in the size and position of the exons between Arabidopsis and tomato CTR1 genomic sequences. Complementation of the Arabidopsis ctr1-8 mutant with each of the tomato CTR genes indicates that they are all capable of functioning as negative regulators of the ethylene pathway. We previously reported that LeCTR1 expression is up-regulated in response to ethylene. Here, quantitative real-time PCR was carried out to detail expression for LeCTR1 and the additional CTR1 -like genes of tomato. Our results indicate that the tomato CTR1 gene family is differentially regulated at the mRNA level by ethylene and during stages of development marked by increased ethylene biosynthesis, including fruit ripening. The possibility of a multi-gene family of CTR1 -like genes in other species besides tomato was examined through mining of EST and genomic sequence databases.  相似文献   

6.
病毒诱导烟草的基因沉默   总被引:2,自引:1,他引:1  
病毒诱导基因沉默是利用RNA介导病毒防卫机制的一项技术。构建含有目的基因片段的人工改造病毒载体,通过农杆菌侵染导致植物内源目的基因沉默。为建立病毒诱导基因沉默体系,选用烟草脆裂病毒(TRV)和烟草为实验材料。构建了八氢番茄红素去饱和酶基因(PDS)的基因沉默病毒载体,病毒载体侵染结果显示目的基因PDS沉默导致烟草幼苗出现光漂白现象。采用RT-PCR的方法检测目的基因PDS的沉默效果,结果显示PDS基因mRNA被显著降解。该体系的建市有利于将来对植物基因进行高通量功能分析。  相似文献   

7.
8.
Virus-induced gene silencing (VIGS) is a widely used, powerful technique for reverse genetics. VIGS vectors derived from the Tobacco rattle virus (TRV) are among the most popular for VIGS. We have developed a TRV RNA2 vector that allows the insertion of gene silencing fragments by ligation-independent cloning (LIC). This new vector has several advantages over previous vectors, particularly for applications involving the analysis of large numbers of sequences, since TRV-LIC vectors containing the desired insert are obtained with 100% efficiency. Importantly, this vector allows the high-throughput cloning of silencing fragments without the use of costly enzymes required for recombination, as is the case with GATEWAY-based vectors. We generated a collection of silencing vectors based on 400 tomato (Solanum lycopersicum) expressed sequence tags in this TRV-LIC background. We have used this vector to identify roles for SlMADS1 and its Nicotiana benthamiana homologs, NbMADS4-1 and -2 in flowering. We find that NbMADS4-1 and -2 act nonredundantly in floral development and silencing of either gene results in loss of organ identity. This TRV-LIC vector should be a valuable resource to the plant community.  相似文献   

9.
10.
Virus-induced gene silencing (VIGS) is an attractive method for assaying gene function in species that are resistant to conventional genetic approaches. However, VIGS has been shown to be effective in only a few, closely related plant species. Tobacco rattle virus (TRV), a bipartite RNA virus, has a wide host range and so in principle could serve as an efficient vector for VIGS in a diverse array of plant species. Here we show that a vector based on TRV sequences is effective at silencing the endogenous phytoene desaturase (PapsPDS) gene in Papaver somniferum (opium poppy). We show that this vector does not compromise the growth or reproduction of poppy and the plants did not display viral symptoms. The silencing of PapsPDS resulted in a significant reduction in PapsPDS mRNA and a concomitant photobleached phenotype. The ability to rapidly assay gene function in P. somniferum will be valuable in manipulation of the opiate pathway in this pharmaceutically important species. We suggest that our vacuum infiltration method used to deliver TRV-based vectors into poppy is a promising approach for expanding VIGS to diverse angiosperm species in which traditional delivery methods fail to induce VIGS. Furthermore, these studies demonstrate the utility of TRV-VIGS for probing gene function in a basal eudicot species that is phylogenetically distant from model plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号