首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
Modulation of Ca2+-activable K+ permeability was compared with modulation of a membrane-bound oxidoreductase activity in human erythrocytes. Changes in the K+ permeability were monitored by flux measurements and single-channel recordings. The enzyme activity was detected by measuring reduction of ferricyanide. Pb2+, Atebrin and menadione had parallel effects on the channel protein and the enzyme. In contrast, propranolol stimulates K+ permeability, but is without effect on enzyme activity. The results demonstrate that the K+ channel and the enzyme are distinct membrane proteins but that the enzyme activity may influence channel gating.  相似文献   

2.
Effects of Cd2+, Co2+, Pb2+, Fe2+ and Mg2+ (1-100 microM) on single-channel properties of the intermediate conductance Ca(2+)-activated K+ (CaK) channels were investigated in inside-out patches of human erythrocytes in a physiological K+ gradient. Cd2+, Co2+ and Pb2+, but not Fe2+ and Mg2+, were able to induce CaK channel openings. The potency of the metals to open CaK channels in human erythrocytes follows the sequence Pb2+, Cd2+ > Ca2+ > or = Co2+ > Mg2+, Fe2+. At higher concentrations Pb2+, Cd2+ and Co2+ block the CaK channel by reducing the opening frequency and the single-channel current amplitude. The potency of the metals to reduce CaK channel opening frequency follows the sequence Pb2+ > Cd2+, Co2+ > Ca2+, which differs from the potency sequence Cd2+ > Pb2+, Co2+ > Ca2+ to reduce the unitary single-channel current amplitude. Fe2+ reduced the channel opening frequency and enhanced the two open times of CaK channels activated by Ca2+, whereas up to 100 microM Mg2+ had no effect on any of the measured single-channel parameters. It is concluded that the activation of CaK channels of human erythrocytes by various metal ions occurs through an interaction with the same regulatory site at which Ca2+ activates these channels. The different potency orders for the activating and blocking effects suggest the presence of at least one activation and two blocking sites. A modulatory binding site for Fe2+ exists as well. In addition, the CaK channels in human erythrocytes are distinct from other subtypes of Ca(2+)-activated K+ channels in their sensitivity to the metal ions.  相似文献   

3.
The modulation of the Ca2+- (or Pb2+-)activated K+ permeability in human erythrocytes by vanadate, menadione and chloro-substituted menadione analogs was investigated by measurements of K+ fluxes and single-channel currents. Vanadate and menadione stimulate the K+ permeability by increasing the probability of channel openings; the menadione analogs, on the other hand, inhibit the K+ permeability by increasing the probability of channel closings. The compounds used in these experiments also interact with oxidoreductases; it is demonstrated that menadione analogs in contrast to menadione strongly inhibit the membrane-bound dehydrogenase in the erythrocytes. Concentrations of Pb2+ above 10 mumol/l, but not of Ca2+, inhibit the enzyme activity as well as the K+ permeability. The parallel effects on dehydrogenase activity and the K+ channels suggest a direct relationship between these two systems in the membrane of erythrocytes.  相似文献   

4.
Fura-2 was used to monitor Pb2+ entry into isolated bovine chromaffin cells exposed to micromolar concentrations of Pb2+ in media containing basal or high concentrations of K+. The entry of Pb2+ consists of voltage-independent and voltage-dependent (K(+)-stimulated) components. The voltage-dependent Pb2+ entry is enhanced by Ca2+ channel agonist BAY K 8644 and blocked by the channel antagonist nifedipine, suggesting the involvement of the L-type Ca2+ channels. In contrast to the transient, K(+)-depolarization-dependent increase in [Ca2+]i, the increase in [Pb2+]i is sustained over a period of several minutes, suggesting the absence of channel inactivation and/or the saturation of Pb(2+)-buffering capacity of the cell cytosol.  相似文献   

5.
The single-channel properties for monovalent and divalent cations of a voltage-independent cation channel from Tetrahymena cilia were studied in planar lipid bilayers. The single-channel conductance reached a maximum value as the K+ concentration was increased in symmetrical solutions of K+. The concentration dependence of the conductance was approximated to a simple saturation curve (a single-ion channel model) with an apparent Michaelis constant of 16.3 mM and a maximum conductance of 354 pS. Divalent cations (Ca2+, Ba2+, Sr2+, and Mg2+) also permeated this channel. The sequence of permeability determined by zero current potentials at high ionic concentrations was Ba2+ greater than or equal to K+ greater than or equal to Sr2+ greater than Mg2+ greater than Ca2+. Single-channel conductances for Ca2+ were nearly constant (13.9 pS-20.5 pS) in the concentrations between 0.5 mM and 50 mM Ca-gluconate. In the experiments with mixed solutions of K+ and Ca2+, a maximum conductance of Ca2+ (gamma Camax) and an apparent Michaelis constant of Ca2+ (K Cam) were obtained by assuming a simple competitive relation between the cations. Gamma Camax and K Cam were 14.0 pS and 0.160 mM, respectively. Single-channel conductances in mixed solutions were well-fitted to this competitive model supporting that this cation channel behaves as a single-ion channel. This channel had relatively high-affinity Ca2+-binding sites.  相似文献   

6.
Polymyxin B, a novel inhibitor of red cell Ca2+-activated K+ channel   总被引:1,自引:0,他引:1  
Polymyxin B (PXB), a cyclic peptide antibiotic, in concentrations 0.1-3.0 mg/ml (0.08-4.0 mmol/l), inhibited the K+ efflux induced by opening of the Ca2+-activated K+ channel (the Gárdos effect) in intact human red blood cells. The inhibition was observed when the Gárdos effect was elicited by Ca2+ in the presence of vanadate, or propranolol, in ATP-depleted cells, and in A23187-treated cells. The inhibition of the Gárdos effect is caused neither by the inhibition of the anion channel by PXB nor by the inhibition of Ca2+ entry. It can be ascribed to the inhibition of the Ca2+-activated K+ channel. The mechanism of the inhibition remains to be elucidated.  相似文献   

7.
The effects of quinine and tetraethylammonium (TEA) on single-channel K+ currents recorded from excised membrane patches of the insulin-secreting cell line RINm5F were investigated. When 100 microM quinine was applied to the external membrane surface K+ current flow through inward rectifier channels was abolished, while a separate voltage-activated high-conductance K+ channel was not significantly affected. On the other hand, 2 mM TEA abolished current flow through voltage-activated high-conductance K+ channels without influencing the inward rectifier K+ channel. Quinine is therefore not a specific inhibitor of Ca2+-activated K+ channels, but instead a good blocker of the Ca2+-independent K+ inward rectifier channel whereas TEA specifically inhibits the high-conductance voltage-activated K+ channel which is also Ca2+-activated.  相似文献   

8.
Patch-clamp whole-cell and single-channel current recordings were made from pig pancreatic acinar cells to test the effects of quinine, quinidine, Ba2+ and Ca2+. Voltage-clamp current recordings from single isolated cells showed that high external concentrations of Ba2+ or Ca2+ (88 mM) abolished the outward K+ currents normally associated with depolarizing voltage steps. Lower concentrations of Ca2+ only had small inhibitory effects whereas 11 mM Ba2+ almost blocked the K+ current. 5.5 mM Ba2+ reduced the outward K+ current to less than 30% of the control value. Both external quinine and quinidine (200-500 microM) markedly reduced whole-cell outward K+ currents. In single-channel current studies it was shown that external Ba2+ (1-5 mM) markedly reduced the probability of opening of high-conductance Ca2+ and voltage-activated K+ channels whereas internal Ba2+ (6 X 10(-6) to 3 X 10(-5) M) caused activation at negative membrane potentials and inhibition at positive potentials. Quinidine (200-400 microM) evoked rapid chopping of single K+ channel openings acting both from the outside and inside of the membrane and in this way markedly reduced the total current passing through the channels.  相似文献   

9.
The effects of sarcoplasmic reticulum lumenal (trans) Ca2+ on cytosolic (cis) ATP-activated rabbit skeletal muscle Ca2+ release channels (ryanodine receptors) were examined using the planar lipid bilayer method. Single channels were recorded in symmetric 0.25 M KCl media with K+ as the major current carrier. With nanomolar [Ca2+] in both bilayer chambers, the addition of 2 mM cytosolic ATP greatly increased the number of short channel openings. As lumenal [Ca2+] was increased from < 0.1 microM to approximately 250 microM, increasing channel activities and events with long open time constants were seen at negative holding potentials. Channel activity remained low at positive holding potentials. Further increase in lumenal [Ca2+] to 1, 5, and 10 mM resulted in a decrease in channel activities at negative holding potentials and increased activities at positive holding potentials. A voltage-dependent activation by 50 microM lumenal Ca2+ was also observed when the channel was minimally activated by < 1 microM cytosolic Ca2+ in the absence of ATP. With microM cytosolic Ca2+ in the presence or absence of 2 mM ATP, single-channel activities showed no or only a weak voltage dependence. Other divalent cations (Mg2+, Ba2+) could not replace lumenal Ca2+. On the contrary, cytosolic ATP-activated channel activities were decreased as lumenal Ca2+ fluxes were reduced by the addition of 1-5 mM BaCl2 or MgCl2 to the lumenal side, which contained 50 microM Ca2+. An increase in [KCl] from 0.25 M to 1 M also reduced single-channel activities. Addition of the "fast" Ca2+ buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cls chamber increased cytosolic ATP-, lumenal Ca(2+)-activated channel activities to a nearly maximum level. These results suggested that lumenal Ca2+ flowing through the skeletal muscle Ca2+ release channel may regulate channel activity by having access to cytosolic Ca2+ activation and Ca2+ inactivation sites that are located in "BAPTA-inaccessible" and "BAPTA-accessible" spaces, respectively.  相似文献   

10.
The possible presence and properties of the Ca2+-dependent K+ channel have been investigated in the Ehrlich ascites tumor cell. The treatment with ionophore A23187 + CA2+, propranolol or the electron donor system ascorbate-phenazine methosulphate, all of which activate that transport system in the human erythrocyte, produces in the Ehrlich cell a net loss of K+ (balanced by the uptake of Na+) and a stimulation of both the influx and the efflux of 86Rb. These effects were antagonized by quinine, a known inhibitor of the Ca2+-dependent K+ channel in other cell systems, and by the addition of EGTA to the incubation medium. Ouabain did not have an inhibitory effect. These results suggests that the Ehrlich cell possesses a Ca2+-dependent K+ channel whose characteristics are similar to those described in other cell systems.  相似文献   

11.
Calcium and voltage dependence of the Ca2+-activated K+ channel, K(Ca), was studied at the single-channel level in cultured hippocampal neurons from rat. The K(Ca) channel has approx. 220 pS conductance in symmetrical 150 mM K+, and is gated both by voltage and by Ca2+ ions. For a fixed Ca2+ concentration at the inner membrane surface, [Ca]i, channel open probability, Po, increases e-fold for 14 mV positive change in membrane potential. At a fixed membrane potential (0 mV), channel activity is first observed at [Ca]i = 10(-6) M, and increases with Ca2+ concentration approximating an absorption isotherm with power 1.4. The [Ca]i required to half activate (Po = 0.5) the channel is 4.10(-6) M. When compared to other preparations, the K(Ca) channel from hippocampal neurons reported here shows the lowest Ca2+ sensitivity and the highest voltage sensitivity. These findings are interpreted in evolutionary terms.  相似文献   

12.
The treatment of rat thymocytes with A23187 + Ca2+, ascorbate-phenazine methosulphate or propranolol induced quinine-sensitive fluxes of K+ (Rb+) suggesting the presence in the cell membrane of Ca2+-dependent K+ channels. Concanavalin A induced K+ channel activation only at very high doses (13 micrograms/ml). Neither quinine nor the increase of the K+ concentration in the medium to 30 mM prevented the stimulation of amino acid transport induced by concanavalin A, suggesting that the Ca2+-dependent K+ channel is not involved in the early phenomena of lymphocyte activation.  相似文献   

13.
High-conductance K+ channels are known to be activated by internal Ca2+ and membrane depolarization. The effects of changes in internal Mg2+ concentration have now been investigated in patch-clamp single-channel current experiments on excised membrane fragments from mouse acinar cells. It is shown that Mg2+ in the concentration range 10(-6)-10(-3) M evokes a dose-dependent K+ channel activation at a constant Ca2+ concentration of 10(-8) M. The demonstration that changes in [Mg2+]i between 2.5 X 10(-4) and 1.13 X 10(-3) M has effects on the channel open-state probability indicates that fluctuations in [Mg2+]i in intact cells may influence the control of channel opening.  相似文献   

14.
K+-selective ion channels from a mammalian brain synaptosomal membrane preparation were inserted into planar phospholipid bilayers on the tips of patch-clamp pipettes, and single-channel currents were measured. Multiple distinct classes of K+ channels were observed. We have characterized and described the properties of several types of voltage-dependent, Ca2+-activated K+ channels of large single-channel conductance (greater than 50 pS in symmetrical KCl solutions). One class of channels (Type I) has a 200-250-pS single-channel conductance. It is activated by internal calcium concentrations greater than 10(-7) M, and its probability of opening is increased by membrane depolarization. This channel is blocked by 1-3 mM internal concentrations of tetraethylammonium (TEA). These channels are similar to the BK channel described in a variety of tissues. A second novel group of voltage-dependent, Ca2+-activated K+ channels was also studied. These channels were more sensitive to internal calcium, but less sensitive to voltage than the large (Type I) channel. These channels were minimally affected by internal TEA concentrations of 10 mM, but were blocked by a 50 mM concentration. In this class of channels we found a wide range of relatively large unitary channel conductances (65-140 pS). Within this group we have characterized two types (75-80 pS and 120-125 pS) that also differ in gating kinetics. The various types of voltage-dependent, Ca2+-activated K+ channels described here were blocked by charybdotoxin added to the external side of the channel. The activity of these channels was increased by exposure to nanomolar concentrations of the catalytic subunit of cAMP-dependent protein kinase. These results indicate that voltage-dependent, charybdotoxin-sensitive Ca2+-activated K+ channels comprise a class of related, but distinguishable channel types. Although the Ca2+-activated (Type I and II) K+ channels can be distinguished by their single-channel properties, both could contribute to the voltage-dependent Ca2+-activated macroscopic K+ current (IC) that has been observed in several neuronal somata preparations, as well as in other cells. Some of the properties reported here may serve to distinguish which type contributes in each case. A third class of smaller (40-50 pS) channels was also studied. These channels were independent of calcium over the concentration range examined (10(-7)-10(-3) M), and were also independent of voltage over the range of pipette potentials of -60 to +60 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Bupivacaine is a local anesthetic compound belonging to the amino amide group. Its anesthetic effect is commonly related to its inhibitory effect on voltage-gated sodium channels. However, several studies have shown that this drug can also inhibit voltage-operated K(+) channels by a different blocking mechanism. This could explain the observed contractile effects of bupivacaine on blood vessels. Up to now, there were no previous reports in the literature about bupivacaine effects on large conductance voltage- and Ca(2+) -activated K(+) channels (BK(Ca)). Using the patch-clamp technique, it is shown that bupivacaine inhibits single-channel and whole-cell K(+) currents carried by BK(Ca) channels in smooth muscle cells isolated from human umbilical artery (HUA). At the single-channel level bupivacaine produced, in a concentration- and voltage-dependent manner (IC(50) 324 μM at +80 mV), a reduction of single-channel current amplitude and induced a flickery mode of the open channel state. Bupivacaine (300 μM) can also block whole-cell K(+) currents (~45% blockage) in which, under our working conditions, BK(Ca) is the main component. This study presents a new inhibitory effect of bupivacaine on an ion channel involved in different cell functions. Hence, the inhibitory effect of bupivacaine on BK(Ca) channel activity could affect different physiological functions where these channels are involved. Since bupivacaine is commonly used during labor and delivery, its effects on umbilical arteries, where this channel is highly expressed, should be taken into account.  相似文献   

16.
Functional modification of a Ca2+-activated K+ channel by trimethyloxonium   总被引:3,自引:0,他引:3  
R MacKinnon  C Miller 《Biochemistry》1989,28(20):8087-8092
Single Ca2+-activated K+ channels from rat skeletal muscle plasma membranes were studied in neutral phospholipid bilayers. Channels were chemically modified by briefly exposing the external side to the carboxyl group modifying reagent trimethyloxonium (TMO). TMO modification, in a "multi-hit" fashion, reduces the single-channel conductance without affecting ion selectivity. Modification also shifts the voltage activation curve toward more depolarized voltages and reduces the affinity of the channel blocker charybdotoxin (CTX). CTX, bound to the channel during the TMO exposure, prevents the TMO-induced reduction of the single-channel conductance. These data suggest that the high-conductance Ca2+-activated K+ channel has carboxyl groups on its external surface. These groups influence ion conduction, gating, and the binding of CTX.  相似文献   

17.
L Varecka  E Peterajová 《FEBS letters》1990,276(1-2):169-171
We found that vanadate-induced 45Ca2+ uptake by red cells is maximal at 25 degrees C. At this temperature, the Cai-induced increase of the K+ permeability (the Gárdos effect) shows a lag (up to 8 min) which is not observed at 37 degrees C. This cannot be explained by the lack of availability of Ca2+ for the Ca2(+)-activated K+ channel, and suggests that its activation by Ca2+ is mediated by a temperature-dependent mechanism which remains unknown so far. The lag is not observed when the Gárdos effect was initiated by propranolol. This shows that the putative temperature-dependent step is different from chloride transport.  相似文献   

18.
To assess the possibility of stimulating Ca2+-activated K+ channels, marine fish erythrocytes were incubated at 20-22 degrees C in saline containing a Ca2+-ATPase inhibitor (orthovanadate), a Ca2+ ionophore (A23187), propranolol or Pb2+. Incubation of the cells for up to 2 h under control conditions or in the presence of 5 mM NH4VO3 and 1 mM Ca2+ did not affect the intracellular K+ and Na+ concentrations. About 50% cellular K+ was lost from erythrocytes incubated in the presence of 0.01 mM A23187, 1 mM EGTA and 0.4-1.0 mM Ca2+. There was a significant loss of cellular K+ after the addition of 0.05-0.2 mM propranolol to the incubation medium. The stimulatory effect of propranolol on the K+ efflux was independent of external Ca2+. Blockers of Ca2+ transport, verapamil and Co2+, caused only a small decrease in the K+ loss induced by propranolol. The treatment of erythrocytes with 1-2 microM Pb2+ led to a minor K+ loss, but at a Pb2+ concentration of 20-50 microM, about 70% cellular K+ was lost. The K+ efflux induced by propranolol or Pb2+ was completely blocked by 1 mM quinine. The induced K+ loss from the erythrocytes was accompanied by a slight increase in the intracellular Na+ concentration. These data indicate the possibility of inducing Ca2+- and Pb2+-activated potassium channels in erythrocytes of S. porcus. A distinctive feature of the cells is a high sensitivity to propranolol, which activates K+ channels in the absence of external Ca2+.  相似文献   

19.
We report transient expression of a full-length cDNA encoding the Ca2+ release channel of rabbit skeletal muscle sarcoplasmic reticulum (ryanodine receptor) in HEK-293 cells. The single-channel properties of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate-solubilized and sucrose gradient-purified recombinant Ca2+ release channels were investigated by using single-channel recordings in planar lipid bilayers. The recombinant Ca2+ release channel exhibited a K+ conductance of 780 pS when symmetrical 250 mM KCl was used as the conducting ion and a Ca2+ conductance of 116 pS in 50 mM luminal Ca2+. Opening events of the recombinant channels were brief, with an open time constant of approximately 0.22 ms. The recombinant Ca2+ release channel was more permeable to Ca2+ than to K+, with a pCa2+/pK+ ratio of 6.8. The response of the recombinant Ca2+ release channel to various concentrations of Ca2+ was biphasic, with the channel being activated by micromolar Ca2+ and inhibited by millimolar Ca2+. The recombinant channels were activated by ATP and caffeine, inhibited by Mg2+ and ruthenium red, and modified by ryanodine. Most recombinant channels were asymmetrically blocked, conducting current unidirectionally from the luminal to the cytoplasmic side of the channel. These data demonstrate that the properties of recombinant Ca2+ release channel expressed in HEK-293 cells are very similar, if not identical, to those of the native channel.  相似文献   

20.
Patch-clamp single-channel current recording experiments have been carried out on intact insulin-secreting RINm5F cells. Voltage-activation of high-conductance K+ channels were studied by selectively depolarizing the electrically isolated patch membrane under conditions with normal Ca2+ concentration in the bath solution but with or without Ca2+ in the patch pipette solution. When Ca2+ was present in the pipette, 40 mV to 120 mV depolarizing pulses (100 ms) from the normal resting potential (-70 mV) regularly evoked tetraethylammonium-sensitive large outward single-channel currents and the average open state probability during the pulses varied from about 0.015 (40 mV pulses) to 0.1 (120 mV pulses). In the absence of Ca2+ in the pipette solution the same protocol resulted in fewer and shorter K+ channel openings and the open-state probability varied from about 0.0015 (40 mV pulses) to about 0.03 (120 mV pulses). It is concluded that Ca2+ entering voltage-gated channels raises [Ca2+]i locally and thereby markedly enhances the open-state probability of tetraethylammonium-sensitive voltage-gated high-conductance K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号