首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress stimulates fibrogenesis, and selenium (Se) has antioxidant properties. This study determined whether Se supplementation affects CCl4-induced liver injury and fibrosis. Mice were administered CCl4 over 4 weeks, while controls received olive oil. Se was provided as sodium selenite in the drinking water. Se increased liver Se-dependent glutathione peroxidase activity and decreased liver malondialdehyde after CCl4. Se decreased liver inflammation but not necrosis caused by CCl4. Se increased hepatocyte apoptosis after CCl4 and the pro-apoptotic BAX and Bcl Xs/l proteins. Stellate cell apoptosis occurred only after CCl4 in Se-supplemented mice. Se decreased stellate cell number and fibrosis after CCl4. Liver matrix metalloproteinase-9 increased after CCl4 with Se supplementation. In conclusion, Se supplementation decreased hepatic fibrosis after CCl4 in the setting of decreased inflammation but increased apoptosis. The principal mechanisms for the decreased fibrosis are a lower number of collagen-producing stellate cells and increased collagen degradation.  相似文献   

2.
Gut dysbiosis contributes to hepatic fibrosis. Emerging evidence revealed the major role of traditional Chinese medicine (TCM) in gut microbiota homeostasis. Here, we aimed to investigate the anti-fibrotic activity and underlying mechanism of ganshuang granules (GS), particularly regarding gut microbiota homeostasis. CCl4-induced hepatic fibrosis models were allocated into 4 groups receiving normal saline (model), 1.0, 2.0, or 4.0 g/kg GS for 5 weeks. As result, GS treatment alleviated liver injury in CCl4-induced hepatic fibrosis, presenting as decreases of the liver index, alanine aminotransferase, and aspartate transaminase. Histological staining and expression revealed that the enhanced oxidative stress, inflammatory and hepatic fibrosis in CCl4-induced models were attenuated by GS. Immunohistochemical staining showed that tight junction-associated proteins in intestinal mucosa were up-regulated by GS. 16S rRNA sequencing showed that GS rebalanced the gut dysbiosis manifested as improving alpha and beta diversity of gut microbiota, reducing the ratio of Firmicutes to Bacteroidetes, and regulating the relative abundance of various bacteria. In summary, GS decreased the intestinal permeability and rebalanced the gut microbiota to reduce the oxidative stress and inflammation, eventually attenuating CCl4-induced hepatic fibrosis.  相似文献   

3.
Innate immune signaling associated with Toll-like receptors (TLRs) is a key pathway involved in the progression of liver fibrosis. In this study, we reported that TLR2 is required for hepatic fibrogenesis induced by carbon tetrachloride (CCl4). After CCl4 treatment, TLR2−/− mice had reduced liver enzyme levels, diminished collagen deposition, decreased inflammatory infiltration and impaired activation of hepatic stellate cells (HSCs) than wild type (WT) mice. Furthermore, after CCl4 treatment, TLR2−/− mice demonstrated downregulated expression of profibrotic and proinflammatory genes and impaired mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) activation than WT mice. Collectively, our data indicate that TLR2 deficiency protects against CCl4-induced liver fibrosis.  相似文献   

4.
Anti-fibrotic and organ protective effects of brain natriuretic peptide (BNP) have been reported. In this study, effects of BNP on liver fibrosis were examined in the carbon tetrachloride (CCl4)-induced liver fibrosis model using BNP-transgenic (Tg) and wild-type (WT) mice. Twice-a-week intraperitoneal injections of CCl4 for 8 weeks resulted in massive liver fibrosis, augmented transforming growth factor (TGF)-β1 and type I procollagen α1 chain (Col1a1) mRNA expression, and the hepatic stellate cell (HSC) activation in WT mice, all of which were significantly suppressed in Tg mice. These observations indicate that BNP inhibits liver fibrosis by attenuating the activation of HSCs.  相似文献   

5.
ObjectivePremature senescence is related to progerin and involves in endothelial dysfunction and liver diseases. Activating sirtuin 1 (SIRT1) ameliorates liver fibrosis. However, the mechanisms of premature senescence in defenestration of hepatic sinusoidal endothelial cells (HSECs) and how SIRT1 affects HSECs fenestrae remain elusive.MethodsWe employed the CCl4‐induced liver fibrogenesis rat models and cultured primary HSECs in vitro, administered with the SIRT1‐adenovirus vector, the activator of SIRT1 and knockdown NOX2. We measured the activity of senescence‐associated β‐galactosidase (SA‐β‐gal) in HSECs. Meanwhile, the protein expression of SIRT1, NOX2, progerin, Lamin A/C, Ac p53 K381 and total p53 was detected by Western blot, co‐immunoprecipitation and immunofluorescence.ResultsIn vivo, premature senescence was triggered by oxidative stress during CCl4‐induced HSECs defenestration and liver fibrogenesis, whereas overexpressing SIRT1 with adenovirus vector lessened premature senescence to relieve CCl4‐induced HSECs defenestration and liver fibrosis. In vitro, HSECs fenestrae disappeared, with emerging progerin‐associated premature senescence; these effects were aggravated by H2O2. Nevertheless, knockdown of NOX2, activation of SIRT1 with resveratrol and SIRT1‐adenovirus vector inhibited progerin‐associated premature senescence to maintain fenestrae through deacetylating p53. Furthermore, more Ac p53 K381 and progerin co‐localized with the abnormal accumulation of actin filament (F‐actin) in the nuclear envelope of H2O2‐treated HSECs; in contrast, these effects were rescued by overexpressing SIRT1.ConclusionSIRT1‐mediated deacetylation maintains HSECs fenestrae and attenuates liver fibrogenesis through inhibiting oxidative stress‐induced premature senescence.  相似文献   

6.
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is critical in the pathogenesis of alcoholic liver cirrhosis. However, the effect of ALHD2 on liver fibrosis remains to be further elucidated. This study aimed to demonstrate whether ALDH2 regulates carbon tetrachloride (CCl4)‐induced liver fibrosis and to investigate the efficacy of Alda‐1, a specific activator of ALDH2, on attenuating liver fibrosis. ALDH2 expression was increased after chronic CCl4 exposure. ALDH2 deficiency accentuated CCl4‐induced liver fibrosis in mice, accompanied by increased expression of collagen 1α1, α‐SMA and TIMP‐1. Moreover, ALDH2 knockout triggered more ROS generation, hepatocyte apoptosis and impaired mitophagy after CCl4 treatment. In cultured HSC‐T6 cells, ALDH2 knockdown by transfecting with lentivirus vector increased ROS generation and α‐SMA expression in an in vitro hepatocyte fibrosis model using TGF‐β1. ALDH2 overexpression by lentivirus or activation by Alda‐1 administration partly reversed the effect of TGF‐β1, whereas ALDH2 knockdown totally blocked the protective effect of Alda‐1. Furthermore, Alda‐1 administration protected against liver fibrosis in vivo, which might be mediated through up‐regulation of Nrf2/HO‐1 cascade and activation of Parkin‐related mitophagy. These findings indicate that ALDH2 deficiency aggravated CCl4‐induced hepatic fibrosis through ROS overproduction, increased apoptosis and mitochondrial damage, whereas ALDH2 activation through Alda‐1 administration alleviated hepatic fibrosis partly through activation of the Nrf2/HO‐1 antioxidant pathway and Parkin‐related mitophagy, which indicate ALDH2 as a promising anti‐fibrotic target and Alda‐1 as a potential therapeutic agent in treating CCl4‐induced liver fibrosis.  相似文献   

7.
Sirtuin3 (SIRT3) plays an important role in maintaining normal mitochondrial function and alleviating oxidative stress. After carbon tetrachloride (CCl4) administration, the expression of SIRT3 decreased in the liver of mice, which indicated that the SIRT3 might play a crucial role during chemical‐induced acute hepatic injury. To verify the hypothesis, CCl 4 was given to induce acute hepatic injury in SIRT3 knockout (KO) mice and wild‐type (WT) mice. CCl 4‐induced liver injury was more severe in SIRT3 KO mice compared with the WT mice. In addition, the oxidative stress induced by CCl 4 was enhanced in the SIRT3 KO mice. Furthermore, the increased expression of dynamin‐related protein 1 was also aggravated in SIRT3 KO mice after CCl 4 administration. In conclusion, our study demonstrated that SIRT3 deficiency exacerbated CCl 4‐induced impairment of the liver in mice, and the mechanism might be related to enhanced oxidative stress.  相似文献   

8.
Regulation on the function of the hepatic stellate cells (HSCs) is one of the proposed therapeutic approaches to liver fibrosis. In the present study, we examined the in vitro and in vivo effects of CPU-II2, a novel synthetic oleanolic acid (OLA) derivative with nitrate, on hepatic fibrosis. This compound alleviated CCl4-induced hepatic fibrosis in mice with a decrease in hepatic hydroxyproline (Hyp) content and histological changes. CPU-II2 also attenuated the mRNA expression of α-smooth muscle actin (α-SMA) and tissue inhibitor of metalloproteinase type 1 (TIMP-1) induced by CCl4 in mice and reduced both mRNA and protein levels of α-SMA in HSC-T6 cells. Interestingly, CPU-II2 did not affect the survival of HSC-T6 cells but decreased the expression of procollagen-α1 (I) in HSC-T6 cells through down-regulating the phosphorylation of p38 MAPK. Conclusion: CPU-II2 attenuates the development of liver fibrosis rather by regulating the function of HSCs through p38 MAPK pathway than by damaging the stellate cells.  相似文献   

9.
This study aimed to investigate whether treatments with vitamin E, L-carnitine and melatonin can protect against CCl4 and diabetes-induced hepatic oxidative stress. Hepatic oxidative stress was performed in rats through 50% v/v carbon tetrachloride (CCl4) (1 ml/kg/3days, i.p.), and through diabetes mellitus induced by streptozotocin (STZ) (40 mg/kg, i.p.). Vitamin E (100 mg/kg/day, i.p), L-carnitine (300 mg/kg/day, i.p.) and melatonin (10 mg/kg/day, i.p.) were injected for a period of 6 weeks. Thereafter, changes in serum glucose level, liver function tests, hepatic malondialdehyde (MDA) content, hepatic reduced glutathione (GSH) content, hepatic superoxide dismutase (SOD) activity, and serum total antioxidant capacity (TAC) level were evaluated. In CCl4-induced liver fibrosis, the efficacy order was melatonin > L-carnitine > vitamin E, while in STZ-induced diabetes, the efficacy order was vitamin E ≥ melatonin > L-carnitine. In conclusion, these data indicate that low dose of melatonin is more effective than high doses of vitamin E and L-carnitine in reducing hepatic oxidative stress induced by CCl4 and diabetes. Moreover, the potent effect of vitamin E in ameliorating diabetes can be linked not only to the antioxidant actions, but also to the superior effect in reducing diabetes-induced hyperglycaemia. Meanwhile, potency of L-carnitine was nearly the same in CCl4 and diabetes-induced liver damage.  相似文献   

10.
Hepatic fibrosis is a chronic inflammatory and reversible repair reaction of the liver under the continuous action of virus or various injuries. In this study, we aimed at identifying the role of miR-326 in the hepatic stellate cell (HSC) activation and liver fibrosis and its potential mechanism. In this study, the liver fibrosis mouse model was developed by injecting CCl4. Liver tissue morphology was observed and the expression level of α-smooth muscle actin, collagen1α1 and miR-326 was measured. Target gene identification was performed by loss-of-function and gain-of-function. The effect of miR-326 on the expression level of the cytokines associated with the TLR4/MyD88/nuclear factor-κB (NF-κB) pathway was assessed in vitro and in vivo. We show that miR-326 was downregulated in CCl4-induced fibrotic mice and activated HSCs. The target gene of miR-326 is TLR4. Moreover, miR-326 inhibited the activation of HSCs in vitro through TLR4/MyD88/NF-κB signaling. miR-326 attenuated hepatic fibrosis and inflammation of CCl4-induced mice in vivo. Our results demonstrate for the first time that miR-326 inhibits HSC activation through TLR4/MyD88/NF-κB signaling. Furthermore, miR-326 plays critical roles in attenuating liver fibrosis and inflammation, suggesting the therapeutic potential of miRNAs.  相似文献   

11.
Min AK  Kim MK  Kim HS  Seo HY  Lee KU  Kim JG  Park KG  Lee IK 《Life sciences》2012,90(5-6):200-205
AimsNon-alcoholic steatohepatitis (NASH) is a liver disease that causes fat accumulation, inflammation and fibrosis. Increased oxidative stress contributes to hepatic inflammation and fibrosis by upregulation of Cytochrome P450 2E1 (CYP2E1), endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) activity. This study examined whether alpha-lipoic acid (ALA), a naturally occurring thiol antioxidant, prevents steatohepatitis through the inhibition of several pathways involved in hepatic inflammation and fibrosis.Main MethodsC57BL/6 mice were fed an MCD diet with or without ALA for 4 weeks. Liver sections from mice on control or MCD diets with or without ALA were stained with hematoxylin-eosin, oil red O, and anti-4-HNE antibody. The effects of ALA on methionine-choline deficient MCD-diet induced plasma AST and ALT as well as tissue TBARS were measured. The effects of ALA on CYP2E1 expression, ER stress, MAPK levels, and NF-κB activity in MCD diet-fed mice liver were measured by northern and western blot analysis.Key findingsDietary supplementation with ALA reduced MCD diet-induced hepatic lipid accumulation, hepatic inflammation, TBARS, 4-HNE, and plasma ALT and AST levels. These effects were associated with a reduced expression of CYP2E1 and reduced ER stress and MAPK and NF-κB activity.SignificanceTaken together, the results of the present study indicate that ALA attenuates steatohepatitis through inhibition of several pathways, and provide the possibility that ALA can be used to prevent the development and progression of non-alcoholic fatty liver disease in patients who have strong risk factors for NASH.  相似文献   

12.
In this study, the hepatoprotective and anti‐fibrotic actions of nootkatone (NTK) were investigated using carbon tetrachloride (CCl4)‐induced liver fibrosis in mice. CCl4 administration elevated serum aspartate and alanine transaminases levels, respectively. In addition, CCl4 produced hepatic oxidative and nitrative stress, characterized by diminished hemeoxygenase‐1 expression, antioxidant defenses, and accumulation of 4‐hydroxynonenal and 3‐nitrotyrosine. Furthermore, CCl4 administration evoked profound expression of pro‐inflammatory cytokine expressions such as tumor necrosis factor‐α, monocyte chemoattractant protein‐1, and interleukin‐1β in hepatic tissues, which corroborated with nuclear factor κB activation. Additionally, CCl4‐treated animals exhibited higher apoptosis, characterized by increased caspase 3 activity, DNA fragmentation, and poly (ADP‐ribose) polymerase activation. Moreover, histological and biochemical investigations revealed marked fibrosis in the livers of CCl4‐administered animals. However, NTK treatment mitigated CCl4‐induced phenotypic changes. In conclusion, our findings suggest that NTK exerts hepatoprotective and anti‐fibrotic actions by suppressing oxidative stress, inflammation, and apoptosis.  相似文献   

13.
14.
The ability of Cichorium intybus root extract (chicory extract) to protect against carbon tetrachloride (CCl4)-induced oxidative stress and hepatotoxicity was evaluated in male rats. The rats were divided into four groups according to treatment: saline (control); chicory extract (100 mg/kg body weight daily, given orally for 2 weeks); CCl4 (1 ml/kg body weight by intraperitoneal injection for 2 consecutive days only); or chicory extract (100 mg/kg body weight daily for 2 weeks) + CCl4 injection on days 16 and 17. The levels of hepatic lipid peroxidation, antioxidants, and molecular biomarkers were estimated twenty-four hours after the last CCl4 injection. Pretreatment with chicory extract significantly reduced CCl4-induced elevation of malondialdehyde levels and nearly normalized levels of glutathione and activity of glutathione S-transferase, glutathione peroxidase (GPx), glutathione reductase, catalase (CAT), paraoxonase-1 (PON1), and arylesterase in the liver. Chicory extract also attenuated CCl4-induced downregulation of hepatic mRNA expression levels of GPx1, CAT and PON1 genes. Results of DNA fragmentation support the ability of chicory extract to ameliorate CCl4-induced liver toxicity. Taken together, our results demonstrate that chicory extract is rich in natural antioxidants and able to attenuate CCl4-induced hepatocellular injury, likely by scavenging reactive free radicals, boosting the endogenous antioxidant defense system, and overexpressing genes encoding antioxidant enzymes.  相似文献   

15.
The aim of the present study was to examine the antioxidant activity of three Veronica species (Plantaginaceae). The antioxidant potential of various extracts obtained from aerial flowering parts was evaluated by DPPH-free (1,1-diphenyl-2-picrylhydrazyl-free) radical scavenging activity and ferric-reducing antioxidant power assays. Considerable antioxidant activity was observed in the plant samples (FRAP values ranged from 0.97 to 4.85 mmol Fe2+/g, and DPPH IC50 values from 12.58 to 66.34 μg/ml); however, these levels were lower than the activity of the control compound butylated hydroxytoluene (BHT) (FRAP: 10.58 mmol Fe2+/g; DPPH IC50: 9.57 μg/ml). Also, the in vivo antioxidant effects were evaluated in several hepatic antioxidant systems in rats (activities of glutathione peroxidase, glutathione reductase, peroxidase, catalase, xanthine oxidase, glutathione content and level of thiobarbituric acid reactive substances) after treatment with different Veronica extracts, or in combination with carbon tetrachloride (CCl4). Pretreatment with 100 mg/kg b.w. of Veronica extracts inhibited CCl4-induced liver injury by decreasing TBA-RS level, increasing GSH content, and bringing the activities of CAT and Px to control levels. The present study suggests that the extracts analyzed could protect the liver cells from CCl4-induced liver damage by their antioxidative effect on hepatocytes.  相似文献   

16.
Liver fibrosis represents a process of healing and scarring in response to chronic liver injury. Augmenter of liver regeneration (ALR) has been shown to protect hepatocytes from various toxins. The aim of this study was to investigate the effects of ALR gene therapy on liver injury and fibrosis induced by CCl4 in rats and further explore the underlying mechanisms. Human ALR expression plasmid was delivered via the tail vein. ALR gene therapy might protect the liver from CCl4-induced injury and fibrogenesis by attenuating the mitochondrial dysfunction, suppressing oxidative stress, and inhibiting activation of HSCs. This report demonstrated that ALR gene therapy protected against the ATP loss, increased the activity of ATPase, decreased intrahepatic reactive oxygen species level, and down-regulated transforming growth factor-β1, platelet-derived growth factor-BB, and α-smooth muscle actin expression. Following gene transfer liver function tests were significantly improved. In brief, ALR gene therapy might be an effective therapeutic reagent for liver fibrosis with potential clinical applications.  相似文献   

17.
Liver fibrosis is a major health problem that can lead to the development of liver cirrhosis and hepatocellular carcinoma. On the other hand, several antioxidants have been shown to possess protective effect against liver fibrosis. Therefore, in the present work, the effectiveness of curcumin, α-lipoic acid, and N-acetylcysteine in protecting against carbon tetrachloride (CCl4)-induced liver fibrosis as well as the mechanism(s) implicated in this protective effect was studied. The antioxidants used in this study resulted in hepatoprotective effect as evident by substantial decreases in collagen deposition in histopathological examinations in addition to significant decrease in serum levels of alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transpeptidase, bilirubin, and transforming growth factor-alpha (TGF-α) as well as hepatic malondialdehyde concentration, with a concurrent increase in serum matrix metalloproteinase-13 (MMP-13) and hepatic reduced glutathione (GSH) levels as compared to CCl4 fibrotic group. In conclusion, curcumin, α-lipoic acid, and N-acetylcysteine protect rats against CCl4-induced liver fibrosis most possibly through their antioxidant activities and their capacities to induce MMP-13 and to inhibit TGF-α levels.  相似文献   

18.
19.
BackgroundThe induction, progression and resolution of liver fibrosis are influenced by multiple chemokines. The inhibition of CCR1 signalling by a specific non-peptide inhibitor (BX471) reduces kidney fibrosis after unilateral ureteral obstruction via suppression of leukocyte recruitment in mice. However, it remains unclear whether selective CCR1 inhibition also affects hepatic fibrogenesis. Therefore we aimed to study the effect of this intervention on liver fibrosis in prevention (CCl4 administration) and rescue (ABCB4-deficient mice) mouse models.MethodsIn the prevention model, hepatic fibrosis was induced by repeated injections of CCl4. Additionally, the verum group was treated with subcutaneous injections of BX471, while controls received vehicle only. ABCB4 deficient mice (on the BALB/c-background) with sclerosing cholangitis and biliary fibrosis received BX471 or vehicle, respectively (rescue model). Liver histopathology was assessed after Sirius red staining of collagen, and hepatic collagen contents were measured. In addition, we performed gene expression analyses of fibrosis-related genes.ResultsBX471 injections were tolerated moderately well by all mice, and all mice developed hepatic fibrosis. Significant differences were neither observed in serum aminotransferase activities after 6 weeks of treatment between the two groups in the prevention nor in the rescue model. Interestingly, hepatic collagen contents were significantly higher in mice treated with BX471 in the prevention model as compared to controls but histological stages of liver sections did not differ. Of note, we observed only moderate effects on liver fibrosis in the ABCB4 knock-out model.ConclusionsOur data indicate that BX471 treatment did neither affect serum and tissue markers of liver injury and fibrosis in the CCl4 model and only moderately in the Abcb4-/- model of biliary fibrosis. The animal models indicate that treatment with BX471 alone is unlikely to exert major beneficial effects in chronic liver disease.  相似文献   

20.
BackgroundLiver fibrosis has been the focus and difficulty of medical research in the world and its concrete pathogenesis remains unclear. This study aims to observe the high-mobility group box 1 (HMGB1)-induced hepatic endothelial to mesenchymal transition (EndoMT) during the development of hepatic fibrosis, and further to explore the crucial involvement of Egr1 in this process.MethodsCarbon tetrachloride (CCl4), diosbulbin B (DB), N-acetyl-p-aminophenol (APAP) and bile duct ligation (BDL) were used to induce liver fibrosis in mice. Serum HMGB1 content, the occurrence of EndoMT and the production of extracellular matrix (ECM) in vitro and in vivo were detected by Western-blot.ResultsThe elevated serum HMGB1 content, the occurrence of EndoMT, the production of ECM and the activation of Egr1 were observed in mice with liver fibrosis induced by CCl4, DB, APAP or BDL. HMGB1 induced EndoMT and ECM production in human hepatic sinusoidal endothelial cells (HHSECs), and then HHSECs lost the ability to inhibit the activation of hepatic stellate cells (HSCs). The hepatic deposition of collagen, the increased serum HMGB1 content and hepatic EndoMT were further aggravated in Egr1 knockout mice. Natural compound silymarin attenuated liver fibrosis in mice induced by CCl4 via increasing Egr1 nuclear accumulation, decreasing serum HMGB1 content and inhibiting hepatic EndoMT.ConclusionEgr1 regulated the expression of HMGB1 that induced hepatic EndoMT, which plays an important role in the development of liver fibrosis.General significance:This study provides a novel therapeutic strategy for the treatment of liver fibrosis in clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号